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1 Introduction

We will analyze the game of Cops and Robbers. The game is played on an
undirected graph by two players, the cop and the robber, who alternate turns.
On each player’s turn, he can move to an adjacent node of the graph, or can
choose not to move. (Because of the fact that they can choose not to move, we
can consider the graph to be reflexive; i.e. every node is connected to itself).
The cop wins if at any point the cop and the robber are on the same node, and
the robber is trying to prevent the cop from winning.

In the version of the game we consider, there is only one cop, and the game
starts with the robber and the cop choosing their starting nodes, with the cop
choosing first, and then moving first once the game has begun.

We present the proof of a theorem (Theorem 1) originally proved by R.
Nowakowski and P. Winkler in their paper Vertex-to-Vertex Pursuit in a Graph
[1], showing exactly which graphs are a win for the cop and explaining the
winning strategy, as well as a proof of a related result (Theorem 2) that was
mentioned in that paper, but not fully proved.

2 The Cop-Win Graphs

In order to identify which graphs are a win for the cop, we first define the
following binary operation(s):

Definition 1. Consider a class of binary relations 6a, on the set of nodes in
a graph, defined for each ordinal a. For two nodes x and y in a graph, we say
that x 6a y if and only if for every node u adjacent to x there exists a node v
adjacent to y and an ordinal p < a such that u 6p v. Additionally, for the base
case a = 0, we define x 60 y to be true if and only if x = y.

Let a′ be the smallest ordinal such that the relation 6a′ is equivalent to the
relation 6a′+1. Let us call this particular relation 6.

Note that in order for this relation to be well-defined, we must prove the
following:

Lemma 1. The ordinal a′ exists.
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Proof. We do this by showing that, if a < b,

{(x, y) | x 6a y} ⊆ {(x, y) | x 6b y}
or, informally, for larger ordinals, the binary relation we defined is more

permissive.
This is equivalent to the statement that, if a < b, then x 6a y =⇒ x 6b y.

So suppose that x 6a y. Using the definition of 6a, this means that for every
node u adjacent to x there is a node v adjacent to y such that u 6c v for some
c < a. But since a is less than b, so is c. So the ordinal c satisfies the criteria in
the definition, and x 6b y.

This proves that a′ exists because, as we increase a, there is now at least one
more pair (x, y) where x 6a y. (If this was not the case, then we would have
already found a′). Therefore we will eventually reach some a′ where x 6a′ y
for every pair of nodes x, y, and since the set of nodes (x, y) where x 6a′+1 y
is a superset of the set of nodes (x, y) where x 6a′ y, we must have that
6a′=6a′+1.

Now that we have shown that the operation 6 is well-defined, we state the
following theorem:

Theorem 1. The cop has a winning strategy on a graph G if and only if x 6 y
for every node x and y in G, where 6 is the binary operation from Definition
1.

For example, consider a cyclic graph with four nodes. This is clearly a win
for the robber; let us use Theorem 1 to verify that. If we construct the table of
values for 60 and 61, we get Table 1. Observe that the results for 60 and 61

are the same, so for this example, a′ = 0. If we look at the table of values for 60,
we see that it is not the case that x 60 y for every x and y. Therefore Theorem
1 would predict that this graph is a win for the robber, which is correct.

As another example, consider the complete graph with four nodes. This
graph is a win for the cop: wherever the robber goes, the cop can follow in a
single move, since every pair of nodes is connected. In order to use the theorem
to verify this result, we construct the tables in Table 2. Observe that the table
we made for 61 is the same as the one for 62, so a′ = 1. Since 61 includes
every pair of nodes, Theorem 1 would predict that this graph is a win for the
cop; this is the correct answer.

60 A B C D
A X
B X
C X
D X

61 A B C D
A X
B X
C X
D X

Table 1: Robber-Win Example. Values of 6n for a cyclic graph with four nodes
A, B, C, D and four edges (A,B), (B,C), (C,D), (D,A).
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60 A B C D
A X
B X
C X
D X

61 A B C D
A X X X X
B X X X X
C X X X X
D X X X X

62 A B C D
A X X X X
B X X X X
C X X X X
D X X X X

Table 2: Cop-Win Example. Values of 6n for a complete graph (i.e. every pair
of nodes is connected) with four nodes A, B, C, D.

Proof of Theorem 1. The cop and robber choose their starting nodes x0 and y0
respectively. We make no assumptions about where they start; this strategy
works for all starting positions. Since y0 6 x0, there must be some x1 adjacent
to x0 and some ordinal a0 < a′ such that y0 6a0

x1 (this is basically just a
restatement of the definition of 6). The cop’s strategy begins by moving to x1.

On subsequent turns, the cop continues this strategy: on his nth turn, if the
cop is at xn and the robber is at yn with xn 6an

yn for some ordinal an, the
cop moves to a vertex xn+1 adjacent to x such that xn+1 6an+1

yn for some
an+1 < an. (The fact that such a vertex will always exist follows from the
definition of 6.)

Using this strategy, the cop will eventually catch the robber: the sequence of
ordinals an is strictly decreasing, so eventually it will reach zero. Additionally,
at all times, xn 6an

yn, so when an = 0, xn = yn: the cop and robber are at
the same vertices, and the cop wins.

We have shown that this condition is sufficient for the cop to win: now we
will show that it is necessary.

Suppose that the cop has a winning strategy starting at some node x0. We
claim that, for every node v0, the cop also has a winning strategy starting from
v0. Because he wins starting from x0, every game state where the cop is at x0

is a winning position for the cop. Therefore, if forced to start at another node
v0, he could simply travel to x0 and then follow his winning strategy. This lets
us simplify the proof: if we can prove that he cannot win when forced to start
at some node v0, then this also proves that he cannot win when he is allowed
to choose the starting node.

Since we are now considering the case where the statement ∀x, y : x 6 y is
false, we can say there are some nodes x0, y0 where x0 66 y0. Then we can force
the cop to start at x0 (see the paragraph above). Since y0 66a′+1 x0, and since
6a′+1=6a′ , there must exist a node y1 adjacent to y0 such that, for every x
adjacent to x0, y1 66 x. The robber starts at y1. On the robber’s nth turn, he
is at some node yn and the cop is at some node xn, with yn 66 xn. (We must
have that yn 66 xn because it is true on the first turn, and if it is true on turn n,
then the robber moves such that it is true on turn n+ 1). The robber chooses a
node yn+1 such that yn+1 66 xn. This node must exist on the nth turn for the
same reason it exists on the first turn. Now, note that if, for some turn number
n, xn = yn (i.e. the robber has been caught) that would mean that yn 60 xn,
by definition, and so then yn 6a′ xn. But the robber’s strategy described above
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guarantees that, for every turn number n, yn 66 xn, so this can never occur, and
the robber is never caught.

Here is an interesting result that follows from this theorem:

Theorem 2. Every incomplete regular graph with at least two nodes is a win
for the robber.

Proof. First we will prove that, for a regular graph, a′ cannot be greater than
1. Observe that, using the definition of 6n, we can rephrase the statement
x 61 y to the statement that every neighbor of x is also a neighbor of y, or that
N(x) ⊆ N(y), where N(x) represents the set of neighbors (the ”neighborhood”)
of x. Then we can rephrase the statement x 62 y to the statement that, for
every node u adjacent to x, there is a v adjacent to y such that N(u) ⊆ N(v).
In order to prove that a′ ≤ 1 for every regular graph, we just need to show that
≤1 is equivalent to ≤2. Using a fact from the proof of Lemma 1, we reduce
this statement to the statement that if x ≤2 y, then x ≤1 y. So, suppose that
x ≤2 y, i.e. every node u adjacent to x has a node v adjacent to y such that
N(u) ⊆ N(v). We’d like to show that u ∈ N(x) =⇒ u ∈ N(y). Again using
the definition of 6, there must exist a v adjacent to y such that N(u) ⊆ N(v).
But since the graph is regular, N(u) ⊆ N(v) is equivalent to N(u) = N(v).
Since v is adjacent to y, and N(u) = N(v), we can say that u is adjacent to y.
So, since u ∈ N(x) =⇒ u ∈ N(y), we can say that 61 is equivalent to 62, and
so a′ ≤ 1.

Now that we know that a′ ≤ 1, we’d like to prove that there is some x, y
such that x 66a′ y. First, observe that if a′ = 0, then x 6 y is equivalent to
x = y by definition, and so it is trivial to find some pair of nodes (x, y) where
x 6= y. So we only need to prove it for the case where a′ = 1. Since the graph is
regular, N(x) ⊆ N(y) is equivalent to N(x) = N(y). Now we need to find some
pair of nodes (x, y) where N(x) 6= N(y). Since the graph is reflexive, we can do
this by finding two nodes x and y that are not connected to each other; then
N(x) includes x but not y, and N(y) includes y but not x, so N(x) 6= N(y).
Since the graph is incomplete, there must be at least one pair of non-adjacent
nodes, so the nodes x and y must exist. Then Theorem 1 guarantees that the
robber can win.
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