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Abstract

In this paper, we look at various sowing games and mention few introductory results about these
games. First, we briefly analyze the games sowing and Atomic Wari. Then, we will explore some
recent findings which link the endgame positions of Ayo, a Mancala game, to a Russian solitaire game
called Tchouka with a similar setup. Finally, we explore some number-theory based theorems with
regards to several varieties of solitaire sowing games.

1 Introduction and Sowing
This paper will resolve around the concept of a sowing game, defined by John Conway as follows:

Definition 1.1. A sowing game is, loosely, a game where a position is a row of pots with some number of
seeds in each pot. On their turn, a player picks up all the seeds from a given pot and places (”sows”) them
one by one into consecutive pots. Ending conditions and specific rules differ between games.

The simplest sowing game is just the game sowing, which was invented by John Conway as a way to
get a handle on the field [2]. In the game, a position is a series of some number of pots with some numbers
of seeds in each of them, and it is represented by a string of numbers giving the number of seeds in each
pot. A move, then, like in most Mancala-style games, is to pick up all the seeds in one pot and sow them
one by one into the adjacent pots. This game can be made either partisan (in which case Right can only
move seeds to the left and Left can only move seeds to the right) or impartial (both players can move seeds
in either direction). We use the following shorthand for notational convenience.

1n = 111 · · · 1︸ ︷︷ ︸
n

To start with, under the rules of the impartial version, it is worth noting that it is possible to convert a
string of n pots with 1 seed in each of them into one pot with n seeds in it. This is achieved inductively: for
the base case of n = 2, we can just shift the position 11 to 02 in a single move. Then, in the inductive step,
we start with the string 1n .
By the inductive hypothesis, we know that we can group n− 1 of the stones together to create the position
10n−2(n− 1). Then, by sowing everything in the rightmost pot, we get 21n−20. Now, the inductive
hypothesis tells us that we can turn 1n−2 into the position 0n−3(n−2), so we can turn this into 20n−3(n− 2),
which goes to 31n−30. We can continue doing this recursively to finally get n1n−n = n

1.1 Values of some sowing positions
1. (10)m03(01)n = 0 for all m and n

Proof. If Left goes first, she loses immediately, since she has no legal moves. If Right goes first, his
only legal move is to the position (10)m−1211(01)n, from which Left can move to (10)m−10220(01)n,
and now Right has no moves. Thus, the second player always wins. K

2. (01)m2(01)n = n+ 1, for all m and n except m = n = 0
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Proof. Right has no legal moves. If n = 0, Left has only one legal move, to (10)m−103 = 0 by
the previous theorem. Otherwise, Left has exactly two legal moves, to (01)m+12(01)n−1 = n by
induction, and to (10)m−13(01)n = 0, which is a terminal position. Thus the position is equivalent to
{n | } = n+ 1 K

Figure 1. Some interesting partisan sowing values.

1.2 Open Questions
For what values of n do Sowing positions exist with values 2−n, and if they all exist, can we systemat-

ically construct them? Is there a simple algorithm that splits Sowing positions into multiple independent
components? Are there any other high-level simplification rules that would allow faster evaluation?

2 Atomic Wari
The second sowing game we consider, is called atomic wari. It is loosely based on a different family of

African games, variously called wari or oware. The board is the same as in Sowing, but it is assumed that
there are infinite pots. A legal move consists of taking all the seeds from one pot, and sowing them to the
left or right, starting with the original pot. As in Sowing, Left moves seeds to the right; Right moves them
to the left(Here we are considering partisan Atomic Wari, but there is also a naturally defined impartial
version of this, where Left and Right can move in either direction). To avoid trivial infinite play, it is illegal
to start a move at a pot that contains only one seed. At the end of a move, if the last pot in which a seed
was dropped contains either two or three seeds, those seeds are captured, that is, removed from the game.
Multiple captures are possible: after any capture, if the previous pot has two or three seeds, they are also
captured. The game ends when there are no more legal moves, or equivalently, when no pot contains more
than one seed. The first player who is unable to move loses.

For example, consider the position 312. Left can sow the contents of the first pot, then capture the
contents of the other two pots, leaving the position 100 = 1. Left can also sow the contents of the rightmost
pot, leaving the position 3111. Right can move to either 301 or 11112. Thus, the Atomic Wari position
312 has the following value:

312 = {1,3111|301,11112}
= {0, {1001|111111}|{11|11101}, {111111|11191}}
= {0, ∗|∗, ∗}
=↑ .

Atomic Wari is an all small game. This is because in the game, it is assumed there are infinite pots
on either side of a given pot. So, if left has a move, there must be some seeds in at least one pot and hence
right also has a move. Since it is an all-small game, all positions have infinitessimal value. In the presence
of remote stars, correct play in a collection of Atomic Wari positions is completely determined by the
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position’s atomic weights(Hence, the name).

Except for deleting leading and trailing empty pots, there don’t seem to be any clear-cut rules for sim-
plifying Atomic Wari positions. The situation is similar to Sowing. Positions can often be split into sums
independent components by hand, but no algorithm is known to find such splits in general. For example,
1231110101311 = 123111 + 1311. Similarly, there are several cases where the first or last pot contains
only one seed, where the position’s value does not change when this pot is removed, but no algorithm is
known for detecting such positions. For example, 1001321 = 1321

2.1 Sparse Atomic Wari
We call an Atomic Wari position “sparse” if every pot has two or fewer seeds.

Theorem 2.1. Every sparse Atomic Wari position has the same value as the corresponding Impartial
Atomic Wari position, and any such position can be split into independent components by removing all
pots with fewer than two seeds.

Proof. We prove the claim by induction on the number of deuces (pots with two seeds). The base case,
in which each pot contains either one seed or none, is trivial. Both the impartial and the partial Atomic
Wari position will have value 0. Now consider a position X with n deuces, and let X ′ denote the sum of
positions obtained by deleting pots with fewer than two seeds. Each of the options of X is a sparse position
with either n − 1 or n − 2 deuces. For each move by Left, there is a corresponding move by Right in the
same contiguous “string” of deuces that results in exactly the same position, once the inductive hypothesis
is applied. For example, given the position 1222201, the Left move to 1210201 = 2 + 2 is matched by the
Right move to 1201201 = 2 + 2. Clearly, X and X ′ have the same options, once the inductive hypothesis
is applied. The theorem follows immediately. K

2.2 Open questions
Are noninteger or nonnumeric atomic weights possible in Atomic Wari? How can we systematically

construct Impartial Atomic Wari positions with value ∗n for any n?

3 Ayo and Tchoukaillon
In this section we discuss results which have been derived relating two sowing-style games, called ayo

and tchoukaillon. The definitions of the games are as follows:

• In ayo, players play on a board with two rows of n pits each. One side of the board is said to ”belong”
to each of the players (thus, it is a partisan game). Some number of game tokens (called ”stones”) are
scattered among the pits. Then, on their turn, a player can pick up all the stones in one pit on their
side of the board and sow them in a successive counterclockwise direction around the board. If the
last stone to be placed causes the pits it lands on to contain two or three stones, and that pit is on the
opponents side of the board, the pit is captured and the stones are removed from the game.
For the winning condition, the first player who is unable to move so that their opponent has a move
on the next turn loses. Note that this is an almost misére-like ending condition (after all, if a player
captured all of the stones on their opponents side of the board they would lose).

• In tchoukaillon, the board only contains a single row of n pits, with a final, larger pit to the right of
all of the others which is called the Roumba. This is a solitaire game, meaning that the only outcome
classes are a game which is winnable for the person playing and a game that is not. On their turn,
the player selects all the stones in one pit and sows them one by one in the direction of the Roumba.
However, they are not allowed to sow stones if doing so would ”overshoot” the Roumba. If the last
stone lands in a non-Roumba pit, they have to sow that pit as well. They win if they can get all of the
stones into the Roumba.
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3.1 Starting results for Ayo
Because ayo is a fairly complicated game, the specific type of arrangement that we will analyze is one

known as a determined position. A determined position is a position for which one player (who we will call
S) is able to move on each turn such that their opponent (who we call N) only has one stone on their side
of the board and thus only one possible move. Because of the way that seeds are sown in this game, it is
clear that the one stone on N ’s side of the board must be in the first pit on their side at the beginning of
their turn. This is the case so that they will have to move that one stone to pit 2, at which point, S can
capture the stone in pit two and deposit one stone in pit 1 of the board as they do that. If N ’s stone were
any further along on their side of the board, S would not be able to capture that stone while still leaving
them only one for the next turn. Note that these games are called determined because S controls all of N ’s
moves, ensuring that they will win.
Example. Here, we will play out the following determined ayo position (S’s stones are on the bottom row
and N ’s are on the top):

0 0 1
4 2 0

On their first turn, N must move their one seed to the next pit. Then, S can sow the pit with size four to
reach the following arrangement:

0 0 1
0 3 1

N must move their stone again, and now S can sow the pit with 3 seeds in it:

0 0 1
0 0 2

On their next turn, N will make the same move for the third time, and now S can win by capturing their
opponent’s seed with their last pit of two seeds and leaving only one seed on their opponent’s side.

3.2 Starting results for Tchoukaillon
tchoukaillon is a comparatively simpler game. To start with, in order to simplify analysis, we claim

that for any positive integer s there is exactly one winnable (meaning that the one player has a winning
strategy) position with s stones. To do this, we will first need to demonstrate an important lemma:

Lemma 3.1. If there is a winning move in a specific tchoukaillon position, there is only one such winning
move.

Proof. Say that there are two or more harvestable positions. We claim that the only good option is to
harvest the smallest one among them. If we instead harvest a larger one, than the smallest one will have
too many stones and thus be unharvestable. As a result, the player will lose no matter what else they do in
a game (since you can never remove stones from a pit if it is too big to sow). K

Having shown this, we are ready to show the main result:

Theorem 3.2. There is one and only one winning in position which contains s stones for each positive
integer s.

Proof. We will accomplish this by induction. To start, say that it holds true for all s less than or equal to
some integer k. Now, if there were a winnable position with k+ 1 stones, the unique first move would be to
sow the smallest sowable pit such that we are left with a winnable position of k stones. If we start with a
winnable position of k stones, then, we can reverse the process of sowing: put one stone in the Roumba, and
then collect stones, starting in the Roumba, from right to left. Then, once you arrive at the first empty pit,
put all of the collected stones in it. It is easy to see that this undoes the unique winning move to a k-stone
winning position and thus generates the only possible k + 1-stone winning position. With this insight, the
proof is complete. K
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3.3 Unification of the two games
Now, it is time to prove the central result of this section:

Theorem 3.3. Determined ayo positions are bijectively related to winnable tchoukaillon positions. In-
deed, we take all of the seeds in the pits of a tchoukaillon position and move them to the winning player’s
row of an ayo position, then put a stone in pit 2 of the other side, and the result will be the unique determined
ayo position with that many stones.

Proof. Consider the ayo position A derived from some winnable ayo position T . We claim that A is a
determined position. To prove this, note that it will be determined if and only if the first player can move
on each turn such that exactly two seeds spills over onto their opponents side of the board (capturing their
opponent’s stone and putting down a new one). However, this exactly equivalent to the tchoukaillon goal
of moving on each turn so that exactly one stone falls into the Roumba (we just need to shift the stones up
by one to account for the difference between putting in one stone and two). Thus, because T is a determined
position, the first player in ayo will be able to leave their opponent with exactly one stone in pit 1 on each
turn until they run out of stones. This is exactly the definition of a determined position, and so the proof
follows from here. K

4 Periodicity of Tchoukaillon
The number of stones in each pit in the winning arrangements of tchoukaillon display an interesting

periodicity ( [1]), which we will analyze here. This task starts by proving the following lemma:

Lemma 4.1. For all positive i, the sum of the seeds in the first i pits of a winning tchoukaillon arrange-
ment with n stones is congruent to n (mod i+ 1).

Remark 4.2. Note that this allows us to recursively derive the number of seeds in each pit of the winning
position with n seeds by using modular arithmetic. As long as we know the number of seeds in each of the
first i− 1 pits, we can take their sum S, and then the number of seeds in the ith will be n− S (mod i+ 1).
The same result can be accomplished by ”unplaying” a tchoukaillon position by trying to reverse the
unique winning move at each step, but this approach is considerably more efficient.

Proof. This is accomplished mainly by induction. To start with, assume that it holds for some n. To go from
the case of n seeds to the one of n+ 1 seeds, we can unplay a single turn as follows: locate the first empty
pot, and place one stone from all previous pots plus only extra stone from the Roumba in that pot (note
that this undoes the one winning move for the n+ 1-seed tchoukaillon position. Say that this empty pot
is at position x. If x is less than or equal to i, then only the seeds under pit i will change, and the overall
number will increase by exactly one. Therefore, the sum of the seeds in pits less than or equal to i will go
from n (mod i + 1) to n + 1 (mod i + 1), which suits our induction perfectly. On the other hand, if x is
greater than i, then all the pits under i including i will lose one stone. Then, the number will decrease by i,
which increases it by one (mod i+ 1), so the result is the same as before. K

Now, we can harness this lemma to prove an important theorem:

Theorem 4.3. The contents of the first i pits in the arrangement with n stones are periodic with period
lcm(1, 2, 3, . . . , i+ 1).

Proof. We set m = lcm 1, 2, 3, . . . , i+ 1). To prove this result, we will need to show that for all positions less
than or equal to i, the number of stones in pit i is the same for n stones as it is for n + m stones. First of
all, the number of stones in pit 1 will be equal in both arrangements, because m is a multiple of 2 and so it
will not change the congruence class of pit 1 in the equation derived above. Similarly, because n + m ≡ n
(mod 3), and x is the number of stones in pit 1 for both arrangements, we will have that the number of
stones in pit 2 for the case with n stones is n− x (mod 3), and the number of stones when there are m+ n
stones is m+ n− x (mod 3), which are equal. The proof is identical for all of the other positions. Now, to
prove that this is the minimum possible period, we just observe that if any of the integers from 1 to i + 1
did not go into m, then one of the equation derived above would be untrue, and so the number of stones in
that pit for n and m+ n total stones would not be the same. Having shown this, the proof is complete. K
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Remark 4.4. Here are the contents of the piles for small values of n, where the periodicity can already be
observed:

Figure 2. The number of stones in each pit for the first winning positions

5 Extensions to wrapping and chaining in Tchoukaillon
One of the most popular sowing games is mancala, an ancient African game. In this game, the objective

is for the player to collect as many seeds in their store as possible. For our purposes, let’s call the two players
Left and Right. In a typical game, three to four seeds are placed in each pit, and none in the stores. Left
begins the game by taking all the seeds from any pit and spreading them to the right (or looping around to
the left, depending), dropping one seed per pit. Note that Left may end up dropping a seed in Right’s store
depending on which pit they started with. Next, Right does the same thing, and then the two alternate
until no seeds remain in the pits. The player with more seeds in their store is declared the winner.

Let us now introduce tchoukaillon-with-wrapping, which is a variant of the regular tchoukail-
lon. The board in this variant is the result of connecting the ends of the Tchoukaillon board, forming
a circular board. The game consists of sowing seeds counterclockwise, which demonstrates the notion of
“wrapping” (i.e., sowing seeds at least one time around the board and ending in the Roumba), similarly to
standard Mancala ( [3]).
Example. Begin with a tchoukaillon-with-wrapping board (4, 7, 0, 2) as in Figure 2. First we play bin
2, from which we obtain (6, 1, 1, 3). Then, playing bin 1, we obtain (1, 2, 2, 4), which is winnable because it
is a non-wrapping tchoukaillon board.

Next, we can look at the concept of “chaining” in games like tchoukaillon. First, let’s look at the
game tchuka roumba. Like tchoukaillon, this game is played on a one-rank board with the rightmost
pit being the Roumba. The number of seeds per pit is equivalent in the starting position. A player begins
by taking all seeds from one of the pits and sowing them closer and closer to the Roumba. If the final seed in
this turn lands in a non-empty pit, then the contents are sowed in another lap. If the final seed lands in the
Roumba, the player takes another turn sowing. However, if the final seed lands in an empty pit, then the
game is terminated. Not unlike in a standard game of mancala, we see the concept of “chaining” in action
for tchuka roumba–if a seed lands in a non-empty pit, the play continues to sow with both that seed and
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Figure 3. Winning Tchoukaillon-with-wrapping board.

Figure 4. Winning Tchoukaillon-with-chaining board.

the seeds already in the pit. We can also see chaining in the game tchoukaillon-with-chaining. This
game uses a linear tchoukaillon board, sowing towards the Roumba as usual.
Example. We have a winning tchoukaillon-with-chaining board (0, 1, 2, 1) (see Figure 3.). When we
sow from pit b4, our final seed is dropped in b3, so our board is then (0, 1, 3, 0). We have no other choice
than to continue sowing in this chain, which lands in the Roumba, so (1, 2, 0, 0) is a winning (non-chaining)
tchoukaillon board. In this case we only used one sequence of moves, but it is not uncommon to have a
sequence of two or more moves which yields a winning board.

6 Minimum number of stones to obtain winning Tchoukaillon
board

At this point, we might be wondering what the minimum number of stones required to produce a winning
tchoukaillon board is.

Theorem 6.1. Fix n ≥ 0. The bi(n) satisfy

i∑
j=1

bj(n) ≡ n (mod i+ 1)

, for each i ≥ 1.

Furthermore, we can uniquely determine the bi(n) using the latter theorem, which gives us

bi(n) =

n =
i−1∑
j=1

bj(n)

 (mod i+ 1).
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We will use this in the proof of the next theorem.

Theorem 6.2. Fix k > 0. A sequence of positive integers (b1, b2, . . . , bk) represents a winning tchoukail-
lon board iff for all 1 ≤ i ≤ k we have bi ≤ i and

k∑
j=i

bj ≡ 0 (mod i).

Proof. Suppose we have a sequence (b1, b2, . . . , bk), and let n =
∑k

j=1 bj . Let us now subtract the sum∑k
j=i bj from

∑k
j=1 bj ≡ n (mod i). We have that (b1, b2, . . . , bk) satisfies

∑i
j=1 bj(n) ≡ n (mod i + 1), for

each i ≥ 1. K

The following theorem presents a formula giving the minimum number of stones for a winning board.

Theorem 6.3. The minimum number of stones N(l) for a winning Tchoukaillon board of length l is given
by the formula

N(l) = 2
1

⌈
3
2

⌈
· · ·
⌈
l − 1
l − 2

⌈
l

l − 1

⌉⌉
· · ·
⌉⌉

.

Proof. We begin by noting that for nonnegative integers r, s, and k, the next highest multiple of k greater
than or equal to r is kd r

k e, and because r < s, we have kd r
k e ≤ kd

s
k e. Using Theorem 6.2, we can construct

a board of length l, which has the fewest number of seeds. Beginning with bl = l, we can choose bi where
bi +

∑l
j=i+1 bj is the next highest multiple of i greater than or equal to

∑l
j=i+1 bj . Now, suppose that

l∑
j=i+1

bj = (i+ 1)
⌈
i+ 2
i+ 1

⌈
· · ·
⌈
l − 1
l − 2

⌈
l

l − 1

⌉⌉
· · ·
⌉⌉

and that
∑l

j=i+1 bj is as small as possible among boards of length l. Having chosen these bis,

l∑
j=i

bj = (i)
⌈
i+ 1
i

⌈
· · ·
⌈
l − 1
l − 2

⌈
l

l − 1

⌉⌉
· · ·
⌉⌉

.

K

7 The Chinese Remainder Theorem
As it turns out, some of the number theory involved with deriving winning tchoukaillon boards creates

a connection between tchoukaillon and the Chinese Remainder Theorem. To review, the CRT reads as
follows:

Theorem 7.1. Let n1, . . . , ni be relatively prime integers, and let a1, . . . , ai be nonnegative integers such
that ai < ni for all i. Then, there is exactly one number m <

∏i
j=1 nj such that m ≡ ai (mod ni) for each

i.

Proof. We need to prove both that such a number m exists, and that it is unique. To show uniqueness,
if there were two numbers m1 and m2 less than the product of the ni which satisfied this, because the ni

are relatively prime, we would have that the product of the ni divides m1 −m2 (because m1 and m2 are
congruent in each Z/niZ). But we must have that the difference m1 −m2 is less than this product, so it
must be 0. Thus m1 = m2, and the proof is complete.

Now, let P be the product of the ni, and let xi be the remainder of ai mod ni. Consider the function
f(x) = (x1, x2, . . . , xi), where x is a congruence class (mod P ). We claim that f is bijective. Obviously,
given a congruence class (mod P ), there is a unique set of congruence classes modulo each of the ni, since
P is the product of the ni. Moreover, from the last part of the problem we know that for every i-tuple of
xi, there is no more than 1 x satisfying the equation, so the function is bijective as desired. However, it is
easy to see that this function being bijective is equivalent to the CRT being true, so we are done. K
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Now, to connect this theorem with tchoukaillon, we will have to define the concept of a remainder
board. This goes as follows:

Definition 7.2. A remainder board is an infinite board called c(n) for some n. We set ci(n) to be the
congruence class of n in Z/iZ, and then c(n) = (c1(n), c2(n)), c3(n) . . .. A remainder board is said to be
increasing if we choose the representative of each congruence class to be greater than or equal to the last
number in the sequence. An increasing remainder board for n is denoted ∼c(n).

Remark 7.3. Note that at a certain point, once i > n, both the normal and increasing remainder boards will
be constant because the congruence class of n (mod i) will just be n.
Example. It is easy to calculate the value of c(5), for instance: it is just (1, 2, 1, 0, 5, 5, 5, . . . , and ∼c(5) =
(1, 2, 5, 5, 5, . . . ).

Now, we demonstrate the following result:

Theorem 7.4. The value of ∼c i(n) is equal to
∑i−1

j=1 bi(n), where bi(n) is the number of stones in pit i when
the total arrangement has n stones.

Remark 7.5. Put into plain English, this theorem says that the number of stones in the ith pit of the
remainder board of n is equal to the sum of the first i pits of the winning tchoukaillon arrangement with
n stones.

Proof. For some n, we define
∼
di be ∼c i+1(n) − ∼c i(n). Then,

∑i−1
j=1

∼
di is clearly ∼c i(n) − ∼c1(n), which is just

∼
c i(n) because ∼c1(n) = 0. In other words, the proof will be complete if we can just show that

∼
di = bi(n).

But this is true because ∼c i(n) ≡ i (mod n), and we saw that the bi(n) satisfy
∑i+1

j=1 bi(n) ≡ n (mod i) as

well. In other words, the sum of b1 through bi is congruent to the sum of
∼
d1 through

∼
di for all i and a fixed

n (mod i). The result follows from a quick induction: if
∼
b i = bi is true for i less than or equal to k, it

must be true for i = k + 1 too or else it would disrupt the modular arithmetic equality. Thus, this proof is
complete. K

With this, we are finally ready to prove a new result:

Theorem 7.6. Let mi1 , . . . ,mik
be a sequence in Z+. We then have that the mij

are all entries in some re-
mainder board (i.e. each mij

= ∼c ij
(n) for some n and all mij

) iff for all ip and iq, mi ≡ mj (mod gcd(i, j)).

Remark 7.7. This is essentially an analogue of the Chinese Remainder theorem for remainder boards, showing
which kinds of sequences can be made into remainder boards. Because we have seen that remainder boards
are so connected to winning tchoukaillon games, though, it can also be used to recursively derive winning
boards of this game.

Proof. For a given n, consider the remainder board c1(n), c2(n), . . . . To prove the ”only if” direction, assume
that there are two value ip and iq such that cip

6≡ ciq
(mod gcd(ip, iq)). This means that the value of n mod

ip and n mod iq for a fixed n are not congruent (mod gcd(ip, iq)). This can only hold true if gcd(ip, iq) > 1.
However, this contradicts basic modular arithmetic, so we have a contradiction. For the ”if” direction of
the biconditional, we just want to find a number n such that n ≡ mij (mod ij) for all j. But of course, the
Chinese remainder theorem tells us that one will exist as long as the ij are relatively prime. The theorem
statement did not assume that they were relatively prime, but this will only cause a problem if two of the
congruence statements directly contradict each other, i.e. if the desired congruence classes of n in mip

and
miq

lead to incompatible results in mod gcd(ip, iq). But because we know that mip
and miq

are congruent
(mod gcd(ip, iq)), this outcome will be impossible. Thus, the proof is complete. K

Theorem 7.8. Consider a sequence m2, . . . ,mk (note that we index the mi unconventionally to make the
theorem statement more elegant), where each mi represent a congruence class (mod i). Then, this sequence
of numbers is equal to the number of stones in each pit of a winning tchoukaillon board (i.e. for all j,
mj+1 = bj(n)) iff for all i and d | i,

∑i−d+1
j=i ≡ 0 (mod d).

Proof. We start with two definitions:
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• An allowable sequence is one which which satisfies the given congruence for all i and divisors d of i.

• A realizable sequence is one which actually forms a list of entries of a winning tchoukaillon board.

Now, our proof will operate by strong induction. The base case is k = 3, because then the sequence mi has
only two members and so the sequence m2,m3 is vacuously allowable. Additionally, we can check by hand,
that every possible value of m2 and m3 (keeping in mind that m2 is 0 or 1 and m3 is 0, 1, or 2) is realizable
as well.

Moving onto the inductive step if the result holds for all m2, . . . ,mk, where k is less than or equal
to some number x, we will prove that it also holds for k = x + 1. To start with, consider a realizable
sequence m2, . . . ,mk (which must also be allowable), and consider what the value of mk+1 could be while
still maintaining a winning tchoukaillon board. In other words, if we have that b1(n), b2(n), . . . , bk−1(n)
make up a winning tchoukaillon board, and we want to know what bk(n) could be as n ranges across
all possible values. Note that by theorem 4.3 , the values of bk(n) are periodic with respect to n with link
lcm(2, 3, . . . , k+ 1). However, the desired sequence of mi will only occur every lcm(2, 3, . . . , k), which means
as n ranges over all positive integers we only have Q = lcm(2,3,...,k+1)

lcm(2,3,...,k) different values of mk+1 to worry about.
Now, we claim that all values of mk+1 which lead to a realizable sequence also lead to an allowable one. To
start, because m2, . . . ,mk+1 is realizable, lemma 4.1 tells us that

k+1∑
i=2

mi ≡ n (mod k + 1).

Then, letting d be some factor of k + 1, we can say that
d∑

i=2
mi +

k+1∑
i=d+1

mi ≡ n (mod d).

But again lemma 4.1 tells us that
∑d

i=2 mj =
∑d−1

i=2 bi(n) ≡ n (mod d), so we can simplify this equation
to

k+1∑
i=d+1

mj ≡ 0 (mod d).

Now, we have that
∑d

i=2 mi ≡ 0 (mod d), and
∑k+1

i=d+1 mi ≡ 0 (mod d), so adding these two equations
together we have that

∑k+1
i=2 mi ≡ 0 (mod d) and the sequence is allowable by definition.

So now, we have shown that all realizable values of mk+1 are allowable. To go the other direction, we
will show that if S1 is the set of all values of mk+1 that are allowable, and S2 is the set of all values that are
realizable, |S1| = |S2|. We know that |S2| = Q = lcm(2,3,...,k+1)

lcm(2,3,...k) , so we just need to prove that |S1| = Q as
well. We do this by casework on the prime factorization of k + 1:

• If k + 1 is prime, we will have that all realizable values of mk+1 are allowable because k + 1 has no
nontrivial factors, so the allowable condition is vacuously true (in other words, we can’t even find d to
test it with).

• If k = px for some prime p, then we can plug in d = px−1 into the allowable condition formula to fix
the value of mk+1 (mod px−1). This means that there are just px

px−1 = p different allowable values for
mk+1. Similarly, there are Q = lcm(2,3,...,px)

lcm(2,3,...,px−1) = p realizable values here, so the S1 = S2 as desired.

• Finally, if (k + 1) is a composite number not equal to the power of a prime, let its prime factorization
be pi1

1 p
i2
2 . . . pil

l . Then, by setting d = pir
r for each 1 ≤ r ≤ l, we can determine the congruence class

of mk+1 mod each factor of k + 1 that is a prime power. Then, since all of the maximal prime powers
in k+ 1’s prime factorization are coprime, the Chinese Remainder Theorem allows us to pick a unique
mk+1 satisfying these conditions and we will have that Q = 1 as well (because all of the factors of k+1
are already present in the numbers less than it). With this final step, we show that the two sets have
equal size, and so the proof is complete.
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8 Conclusion
In this paper, we analyzed basic sowing-style games like mancala and atomic wari. Then, we turned

our focus to the solitaire game of tchoukaillon, and focused on how number theoretic properties determine
the characteristics of its winning positions. We also analyzed several modifications of this game, such as
tchoukaillon-with-wrapping and tchuka roumba. Finally, we used the Chinese Remainder Theorem
to show which kinds of strings of numbers could be the values of pits on a winning tchoukaillon board. In
the future, hopefully more results will be achieved regarding how these results with solitaire sowing games
apply to two-player games.
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