
ERROR CORRECTING CODES FROM COMBINATORIAL GAME

THEORY

ROGER FAN

Abstract. Linear error correction codes are closely related to certain games in the field of
combinatorial game theory. In this essay, we outline their relationship and a few key facts.

1. Introduction

Linear codes are motivated by the idea of sending only a select few code words that are
sufficiently distinct from one another, so that even when an error occurs during transmission,
the receiver can still make out what the original code word was.
Hamming Codes are a specific class of linear codes that correspond to the impartial game

of Nim. However, we will show that linear codes in general correspond to the game of
Turning Turtles, described later.

2. Preliminaries in Coding Theory

For the purposes of this essay, a code word will be a string of n digits. A binary code
word will be a code word such that all digits are either 0 or 1.
We must first formalize the concept of code words being sufficiently distinct from one

another. We do so by using Hamming distance:

Definition 2.1. The hamming distance between two equal-length strings A = (· · · a3a2a1),
B = (· · · b3b2b1) is the number of i such that ai 6= bi. I sometimes express the hamming
distance between A and B to be hamming (A,B).

Using this, we can require that code words must be a hamming distance of d away from
each other to be sufficiently distinct. We will later see that this criteria will be useful in
correcting errors.
Now, we can define a code:

Definition 2.2. A code with length n and hamming distance d is a set of code words, which
are strings of length n that are at least a hamming distance of d away from each other
pairwise.

We define an m-digit error to be a change in a code word where exactly m digits are
changed.
Now, say the sender sent the code word S. If the receiver received the string S ′, then

they could attempt to rectify any errors by assuming the sender sent the code word that is
closest (in hamming distance) to S ′. We call this strategy the ”nearest neighbor rule”, and
in general, we call this process ”decoding”.

Date: August 15, 2021.
1

2 ROGER FAN

Proposition 2.3. A code of hamming distance d = 2m + 1 can detect and correct up to

m-digit errors. A code of hamming distance d = 2m can detect up to m-digit errors and

correct up to (m− 1)-digit errors.

Proof. First, note that if given 3 strings A,B,C, hamming (A,B) + hamming (B,C) ≥
hamming (A,C). This is because if ai 6= ci, then either or both of ai 6= bi or bi 6= ci
are true. The inequality then follows.
If d = 2m+1, we claim that anym-digit error can be corrected by the receiver. If am-digit

error occured, then hamming (S, S ′) = d. For any other code word T , note by definition,
hamming (S, T) = d = 2m+ 1. Then, by the above inequality,

hamming (S ′, T) + hamming (S, S ′) ≥ hamming (S, T)

hamming (S ′, T) ≥ m+ 1

Specifically, this means that the code word S is closer in hamming distance to S ′ than any
other code word. Therefore, the receiver can successfully rectify this m-digit error. (This
can also be extended to any m-or-less-digit error.)
Also, note that for any p-digit error with p > m, the receiver will actually mistake it for a

2m + 1 − p digit error and will end up with the wrong code word. However, codes with an
even hamming distance can somewhat mitigate this shortcoming:
The case for when d = 2m works the same as for d = 2m + 1: all (m − 1)-or-less-digit

errors can be successfully corrected.
However, when an m-digit error occurs, the receiver could still recognize that the distance

to the nearest code word is m; there just might be two such code words. In this case, the
receiver knows that an m-digit error occured rather than mistaking it for a different error,
and the proposition is proven. �

To construct such a code, one can use a greedy algorithm:

Definition 2.4. A lexicode of length n and distance d is the code that is generated by
starting with an empty set of code words S = ∅, then greedily adding the lexicographically
least length-n string that differs from all code words already in S by a hamming distance of
at least d.

We will show that lexicodes hold surprising relations to impartial games.

3. The Game of Turning Turtles

Now, we must investigate an entirely different area of mathematics: combinatorial game
theory, the study of games without chance.
In particular, we would like to study the impartial game of Turning Turtles. Each

game of Turning Turtles is played with a line of turtles, but to avoid wanton animal
cruelty, we play it with a line of coins instead. The rules are determined by some integer k:
during your turn, you must flip k coins, given that the leftmost coin is flipped from heads
to tails.
Notice we can represent any game of Turning Turtles as a binary string. We assign a

digit for each coin in the line; More specifically, we construct a string of digits (· · · ζ3ζ2ζ1),
where ζi is 0 (1) if the ith rightmost coin is tails (heads).

Remark 3.1. When written out, the 0s to the left of the leftmost 1 are often omitted. For
example, the string · · · 0000000101011 could be written simply as 101011.

ERROR CORRECTING CODES FROM COMBINATORIAL GAME THEORY 3

Theorem 3.2. The binary lexicode of length n and distance d is exactly the set of all P
positions of Turning Turtles with k = d − 1. These P positions must also satisfy the

condition that the largest i such that ζi = 1 must have i ≤ n.

Proof. The proof is similar to the proof done in class, just more general.
First, note that there is a valid move from a game of Turning Turtles represented by

string S to a game represented by string T if and only if they differ by k or fewer digits.
Moreover, T must be lexicographically smaller than S. The reader can quickly convince
themselves of these facts using the ruleset of Turning Turtles.
Now, let P be all code words in said lexicode, and let N be all strings of length n not in

the lexicode. We treat these strings as games of Turning Turtles with k = d− 1.
Any move from a P game must go to a N game. This follows from the fact that any

move can only change k digits of the game, and P games, by construction, differ pairwise
by d = k + 1 positions.
Also, from any N game, one can move to a P game. This too is due to the way P is

constructed: note that given an N game G, if there were no P position that it could move
to, then all P positions would be either:

(1) lexicographically larger
(2) Differing to G by at least k + 1 = d positions

In particular, this means that all lexicographically smaller P positions would differ to G by
at least d positions, but this is a contradiction: if this were true, G would be an P position!
Thus, there exists some P position that G can move to.
By a standard result in combinatorial game theory, this suffices to show that P are the

P positions and N are the N positions. �

4. Perfect Binary Codes

We define a perfect code as follows:

Definition 4.1. Consider a lexicode of length n and hamming distance d = 2m + 1. It
is perfect if for every string of length n, there is exactly one code word that is a hamming
distance of m or less away.

Notice that perfect codes must have odd hamming distances. This is due to the fact that
a code with an even hamming distance d = 2m does not know how to correct a string with
hamming distance m away from the nearest code words.

Proposition 4.2. Let |C| be the number of codewords in the code C. A binary lexicode C

of length n = 2m+ 1 is perfect if and only if

|C| ·
m
∑

i=0

(

n

i

)

= 2n

Proof. First, in a perfect code, every code word S corresponds to some number of strings
that will be decoded to S. The number of such strings will be the number of strings that
differ from S by m or fewer positions. Namely, this is

∑m

i=0

(

n

i

)

.
(To see this, choose some 0 ≤ i ≤ m. The number of strings that differ from a codeword

by i digits can be constructed: you simply need to choose i digits from the code word’s n

digits to “flip”, turning 1s to 0s and vice versa. This is just
(

n

i

)

such strings. Then, sum it
over all i’s.)

4 ROGER FAN

It follows that the number of total strings 2n is simply
∑m

i=0

(

n

i

)

times the number of

codewords, so 2n =
∑m

i=0

(

n

i

)

· |C|.
For the other way around, in any binary lexicode, each string of length n must correspond

to either 1 or 0 codewords. (A string cannot correspond to multiple.)
The same reasoning from before can show any code word corresponds to

∑m

i=0

(

n

i

)

strings.

Then, there must be |C| ·
∑m

i=0

(

n

i

)

total strings that correspond to a code word. However, if
it is 2n, then all of the strings must correspond to a single code word, and we are done. �

Remark 4.3. It is a necessary but insufficient condition that for any perfect code,
∑m

i=0

(

n

i

)

|2n.

The only way to find if a code truly exists is to find |C| and show it satisifes |C|·
∑m

i=0

(

n

i

)

= 2n.

There exist some simple perfect codes. The first kind is the lexicode with only 2 code
words: all 0s and all 1s. This occurs when d = n (and both are odd).
Then, there exist perfect codes where the code words are simply all the strings of length

n. This occurs when d = 1.
Both of these families of perfect codes are not very useful. The first can only encode 2

code words, whereas the second cannot even correct a single error. We call these perfect
codes the trivial perfect codes.
However, there exist non-trivial perfect binary codes as well.

Definition 4.4. Let the binary code with n = 2p − 1 and d = 3 be the Hamming Code of
length 2p − 1. It can correct a single bit error.

Of course, Hamming Codes correspond to the game of Turning Turtles with k = 2.
However, there is something special about the game of Turning Turtles with k = 2. It is

actually the game of Nim in disguise!
For the sake of brevity, I will omit the description of Nim and will simply state its relation

to Turning Turtles without proof, as we already have seen this during class.

Proposition 4.5. The game of turning turtles with k = 2 is exactly the game of nim

in disguise. Each digit ζi in the game of turning turtles represents the number of piles

of size i in the game of nim.

Example. The game of Turning Turtles with k = 2 and representation 1010010 is the
game of Nim with 3 piles of sizes 2, 5, and 7, resp. Similarly, 1101010 corresponds to 4 piles
of sizes 2, 4, 6 and 7.

Thus, it is relatively easy to verify if a string of length n is a code word in the Hamming
Code; simply find if the underlying Nim game is a P position.

Theorem 4.6. All Hamming Codes are perfect.

Proof. Note that by definition, n = 2p−1 and d = 3. Since d = 2 ·1+1, m = 1. We can first
find

∑m

i=0

(

n

i

)

= 1 + n = 1 + 2p − 1 = 2p. 2p|2n, which suggests that it might be a perfect
code, but this is an insufficient condition. To show that Hamming Codes are indeed perfect,
we must show |C| = 2n−p.
We can find this by considering the ”incomplete” binary string (ζn · · · ζ10ζ9ζ7ζ6ζ5ζ3), where

all ζt in which t is a power of 2 are omitted. There are n − p digits in this string (since
n = 2p − 1, all ζ2k where 0 ≤ k < p are omitted). Thus, because each digit can only be 0 or
1, there are 2n−p such incomplete strings.

ERROR CORRECTING CODES FROM COMBINATORIAL GAME THEORY 5

I claim there is a one-to-one correspondence between these incomplete strings and P
positions of Nim. (That is, the P positions of Nim where the largest pile is at most n. This
detail is assumed and not stated explicitly in the rest of the proof.)
Treat the incomplete string (ζn · · · ζ10ζ9ζ7ζ6ζ5ζ3) as a Nim game where for each ζi = 1,

there is a pile of size i, and for each ζi = 0, there is not a pile of size i. We do not know if
there are piles of sizes 1, 2, 4, 8 . . . yet.
Then, we can uniquely choose a subset of the piles of sizes 1, 2, 4, 8 . . . to include such that

the resulting Nim game becomes a P position. To do so, find the nim-sum of all the piles
included so far by the incomplete string. More formally, find S =

⊕

ζi=1
i.

Represent S in binary so that S = ap−1 · 2
p−1 + · · · + a1 · 2 + a0 · 1, where ai ∈ {0, 1}.

Notice that S has at most p digits, as all integers less than or equal to n = 2p − 1 cannot
have a nonzero 2p digit.
For each ai, if ai = 1, then include the pile of size 2i. Otherwise, exclude it. These piles

of sizes 2i have nim-sum exactly S. Thus, the entire Nim has nim-sum S ⊕ S = 0, and it is
a P position.
We have shown that any incomplete string corresponds to exactly one P position in Nim.

Then, we must show each P position in Nim corresponds to exactly one incomplete string.
But this is easy! Simply represent the Nim game as a string of length n and omit all the
digits ζ2k .
Thus, since there are 2n−p incomplete strings, there are exactly 2n−p Nim P positions

where all piles are less than n. Moreover, note that every Nim P position with all piles less
than n corresponds to a single, unique Turning Turtles P position (with the largest i

such that ζi = 1 satisfying i ≤ n). Then, each of these P positions corresponds to exactly
one unique Hamming code word! As a result, there are exactly 2n−p such Hamming code
words, and |C| = 2n−p, so we are done.

�

Remark 4.7. This actually makes the process of encoding data, or the process of mapping
binary data to code words, remarkably easy for Hamming Codes. For n − p binary bits of
data (n = 2p − 1), interpret it as an incomplete string (ζn · · · ζ10ζ9ζ7ζ6ζ5ζ3). Then, one can
follow the proof of Theorem 4.6 to construct the corresponding code word. After the receiver
receives this code word, they can use the proof to extract the original n − p bits from the
code word.
Other constructions of the Hamming Code essentially follow this same method. The

Hamming Code is remarkable in that it is rather easy to encode binary data into code
words. This is not often true for other codes.

The Hamming Codes make up an infinite family of nontrivial perfect codes. However,
there exists yet another nontrivial perfect code: the Golay code.

Definition 4.8. The binary Golay Code is the lexicode with n = 23 and d = 7.

The Golay Code can correct up to 3 errors. However, there is something special about
sum S =

∑m

i=0

(

n

i

)

. For the Golay Code, S = 211, which divides 223. This suggests, though
does not prove, that the Golay Code is perfect.

Theorem 4.9. The binary Golay Code is perfect.

The proof for this requires finding |C|, which can either be done by computation or through
techniques in coding theory, which is beyond the scope of this essay.

6 ROGER FAN

Moreover, it is true that the Golay Code and the Hamming Codes are the only nontrivial
perfect binary codes. The proof is of this is also beyond the scope of this essay.

5. The Mock Turtle Theorem

Theorem 5.1 (The Mock Turtle Theorem). Consider the game of Turning Turtles with

k = 2m, played with a line of coins. For every P position of this game with k = 2m, add

a coin to the very right of all the coins, the “Mock Turtle”. Flip it so that the number of

heads-up coins is even. Call these new positions “good positions”, and call all other positions

“bad positions”.

The good positions are exactly the P positions of the game of Turning Turtles, but

with k = 2m+ 1.

Remark 5.2. Recall that in Turning Turtles, if a move turns any number of coins, it
must turn the leftmost coin from face-up to face-down.
(In other texts, it is sometimes the rightmost coin, with the Mock Turtle being added to

the very left, but we use the opposite for the purposes of this essay.)

Proof. Let P be the set of all good positions, and let N be the set of all bad positions. Note
that all P positions have an even amount of heads-up coins, and that they all correspond
to a P position in the game with k = 2m. We will show that P = P and N = N for
Turning Turtles with k = 2m+ 1.
First, we must show all P positions must move to N positions. Any move consists of

turning 2m+1 coins. However, note that P positions always have an even number of coins;
this necessarily means that any move from one P position to another must flip an even
number of coins.
This means that no move with 2m + 1 flips can move from one P position to another.

However, no move with 2m or fewer flips can do so either! Consider the P positions in the
game with k = 2m corresponding to the P positions. By definition, you cannot move from
a such P to another by flipping 2m or fewer coins. Thus, it follows that you cannot move
from any P position to another by flipping 2m or fewer coins as well!
Now, we must show all N positions can move to a P position. Let G ∈ N , and Consider

the position H that is obtained by removing the rightmost coin of G. There are only two
reasons G could be a N position:

(1) either H is an N position in the game with k = 2m
(2) or the total number of heads in G is odd

If both were false, then it would be an P position by definition.
Now, if the first reason is true or if both reasons are true, then a move to a P position

can be constructed as follows:
First, find H ′ ∈ P that H can move to in the game with k = 2m. By definition, H ′ must

exist, as H ∈ N . The move from H to H ′ takes at most 2m flips.
Then, define G′ to be the position obtained by adding a coin to the very right of all coins

in H ′, flipped so that the total number of coins is even.
Notice that G′ is an P position, and that any move from G to G′ takes at most 2m + 1

flips. Thus, this case is done.
Then, if the first reason is false but the second reason is true, then H is a P position in

the game with k = 2m. Flip over the leftmost coin in H to make it H ′, an N position. By
definition, there must exist a move from H ′ to H ′′, where H ′′ is a P position. This move

ERROR CORRECTING CODES FROM COMBINATORIAL GAME THEORY 7

flips over at most 2m coins. Now, we have shown one can flip 2m + 1 coins to get from H

to H ′′, which is a distinct P position.
Now, obtain G′ by taking H ′′ and adding an extra coin to the very right so that the total

number of coins is even. Clearly, one can move from G to G′ by flipping at most 2m + 2
coins.
However, notice that G has an odd number of heads, but G′ has an even number of heads.

Thus, it is impossible to get from G to G′ in an even number of flips. It follows that you
can get from G to G′ in at most 2m+ 1 coins, and we are done. �

Remark 5.3. The Mock Turtle Theorem establishes a general bijection between the P posi-
tions with k = 2m and the P positions with k = 2m+ 1. However, given n, the same proof
can also be used to establish a bijection between

(1) the P positions with k = 2m and with the largest i such that ζi = 1 satisfying i ≤ n

(2) and the P positions with k = 2m+1 and with the largest i such that ζi = 1 satisfying
i ≤ n+ 1

Corollary 5.4. Given the P positions of Turning Turtles with k = 2m + 1, one can

remove the rightmost coin to obtain all P positions of Turning Turtles with k = 2m.

This is essentially the same thing as Theorem 5.1.
Notice that, surprisingly, the Mock Turtle Theorem has applications in constructing linear

codes.

Corollary 5.5. Consider a lexicode with length n and distance d = 2m + 1. For each code

word, add a digit to the end so that the number of 1s is even. We call this digit the ”check

digit”. This new set of code words is simply the lexicode with length n + 1 and distance

d = 2m+ 2.

This follows directly from previous theorems.

Definition 5.6. Let the Extended Hamming Code of length n = 2p be the code obtained by
adding a check digit to the Hamming Code of length n = 2p − 1.

The Extended Hamming Codes have d = 4, so, like before, they can correct 1-digit errors
but can now also detect 2-digit errors.

Definition 5.7. Let the Extended Golay Code of length n = 24 be the code obtained by
adding a check digit to the Golay Code.

The Extended Golay Code has d = 8 and can not only correct 3-digit errors, but can also
detect 4-digit errors. It is often used in practical applications rather than the regular Golay
Code.

6. Nonbinary Lexicodes

So far, we have only discussed binary codes. Here, we will quickly explore the basics of
more general, nonbinary codes.
Consider the general game of Turning Objects. (This is sometimes simply named as

Turning Turtles, but to avoid confusion, we give it a new name.)
Turning Objects is like Turning Turtles, except now, each object has B sides,

numbered from 0 to B − 1. On any turn, you can turn over k objects subject to the
restriction that the leftmost object you turn must turn to a lesser-numbered side.

8 ROGER FAN

Now, we can extend lexicodes into an arbitrary base B. Let a base-B code word be code
words with digits between (inclusive) 0 and B − 1, and let a base-B code be a code with
base-B code words.

Definition 6.1. A more general lexicode of length n, distance d, and base B is the base-B
code that is generated by starting with an empty set of code words S = ∅, then greedily
adding the lexicographically least length-n string that differs from all code words already in
S by a hamming distance of at least d.

Many of the aforementioned theorems have analogues in Turning Objects. I state them
without proof, as their proofs are almost identically the same as before.

Theorem 6.2. The base-B lexicode of length n and distance d is exactly the set of all P
positions of Turning Turtles with k = d− 1 and B sides. These P positions must also

satisfy the condition that the largest i such that ζi 6= 0 must have i ≤ n.

Define perfect codes using the same definition as before.

Proposition 6.3. A base-B lexicode C of length n = 2m+ 1 is perfect if and only if

|C| ·
m
∑

i=0

(

n

i

)

(B − 1)i = Bn

References

[1] John H. Conway AND N. J. A. Sloane. Lexicographic Codes: Error-Correcting Codes from Game Theory

http://neilsloane.com/doc/Me122.pdf

[2] Elwyn R. Berlekamp, John H. Conway, Richard K. Guy. Winning Ways for Your Mathematical Plays,

Volume 3, Volume 3

[3] Aviezri S. Fraenkel. Error-Correcting Codes Derived from Combinatorial Games

https://arxiv.org/pdf/math/9504211.pdf

[4] Terr, David. Perfect Code. From MathWorld–A Wolfram Web Resource, created by Eric W. Weisstein.
https://mathworld.wolfram.com/PerfectCode.html

	1. Introduction
	2. Preliminaries in Coding Theory
	3. The Game of Turning Turtles
	4. Perfect Binary Codes
	5. The Mock Turtle Theorem
	6. Nonbinary Lexicodes
	References

