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1. Introduction

We can split combinatorial games into two categories, partisan and
impartial. This paper will focus on impartial games, where both players
have the same moves available to them. Perhaps the most famous
impartial game is the game of nim, which consists of some piles of
rocks. Each turn, a player may take as many rocks as he or she wants,
but only from a single pile. The player who is unable to make a move
loses the game.

Wythoff’s game has similar rules to nim, but there are typically
only 2 piles at most. In addition to the moves allowed by nim, players
may also take stones from both piles on the same turn, provided an
equal amount is taken from each pile. Wythoff’s game positions
can be represented as (a, b), where a and b are the sizes of the two
piles. Additionally, since the order of the piles does not matter, we will
always write positions such that a ≤ b for convenience.

Another way to visualize Wythoff’s game is as a chess queen on
an arbitrarily large chessboard, where both players take turns moving
the queen with a few caveats. The queen must always move left, down,
or diagonally in those two directions, and the winning condition is the
same: the player unable to move loses, which only happens when the
other player moves the queen into the bottom left corner. Then we can
give coordinates (a, b) to each square on the chessboard, starting with
(0, 0) in the bottom left corner. The game with the queen starting on
(a, b) is then analogous to a Wythoff’s game position (a, b).

In this paper, we will explore the winning strategy for the basic 2-pile
Wythoff’s game, as well as more complicated positions with more
piles.

2. Winning and Losing Positions

In impartial games, we split positions into two categories: winning
positions and losing positions, or N and P positions, respectively.
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Definition 1. Assuming both players play optimally, we call a position
an N position if the next player to move can guarantee a win, and we
call a position a P position if the next player to move will always lose.

Every position is either an N or a P position, and they build recur-
sively off of each other.

Theorem 2. Every N position has some move which results in a P
position, while every move from a P position results in an N position.

This theorem is easy to prove because it makes logical sense: a win-
ning position allows you to give your opponent a losing one, and a
losing position forces you to give your opponent a winning position.
The above theorem simply formalizes these intuitive definitions. In
Wythoff’s nim and many other combinatorial games, the most ba-
sic P position is the position where there are no available moves, which
in this case is (0, 0). We will be focusing on P positions and how to
easily find them for two reasons: knowing the P positions allows op-
timal play, and P positions are difficult to recursively find since every
possible move must be checked.

N positions are comparatively very easy to find, since we only need
to find a winning move. For example, we know that all positions of
the form (0, a) or (a, a) are N positions because we can reach (0, 0)
in one move from those positions. After (0, 0), the next P position is
(1, 2): the available moves are to (0, 1), (0, 2), and (1, 1), which are all
N positions since we can move to (0, 0) in one move. If we continue to
use the theorem concerning N and P positions to exhaustively check
for more P positions, we can eventually make a table of the first few:

Pn 0 1 2 3 4 5 6 7 8 9

an 0 1 3 4 6 8 9 11 12 14

bn 0 2 5 7 10 13 15 18 20 23

Using the table above and our theorem concerning the relationship
between N and P , we can piece together a strategy to play well in
various positions of Wythoff’s game that have relatively few stones.
The basic strategy to win in N positions is to just move to P positions,
which we can see in action in the following example.

Example 3. We can give a winning strategy for a position such as (5, 7)
using what we know so far. From (5, 7), we can move to two different
P positions, (3, 5) and (4, 7), but moving to (3, 5) ends the game faster.
From (3, 5), the second player has many options: (0, 2), (1, 3), (2, 4),
(0, 5), (1, 5), (2, 5), (3, 4), (3, 3), (2, 3), and (0, 3). We respond to (0, 2),
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(0, 5), (0, 3), and (3, 3) with (0, 0), and respond to all the other moves
with (1, 2), which we already saw the winning strategy for. Thus, our
strategy works to guarantee a win in the position (5, 7).

We have the basics of playing Wythoff’s game well, but to play in
positions with many stones we need a fast way to determine the losing
positions.

3. How to Find Losing Positions

It turns out there is a simple explicit formula for P positions outlined
by Wythoff himself in his paper on the subject.

Theorem 4. The P positions of Wythoff’s game are those of the

form (bφnc, bφ2nc) for values of n ≥ 0, where φ = 1+
√
5

2
and bsc is

equal to s rounded down to the nearest integer [Wyt07].

We can check that the values in the table line up with the values
predicted by our new theorem.

Example 5. (b0φc, b0φ2c) = (b0c, b0c) = (0, 0),
(bφc, bφ2c) = (b1.618 . . . c, b2.618 . . . c) = (1, 2),
(b2φc, b2φ2c) = (b3.236 . . . c, b5.236 . . . c) = (3, 5),
(b3φc, b3φ2c) = (b4.854 . . . c, b7.854 . . . c) = (4, 7),
(b4φc, b4φ2c) = (b6.472 . . . c, b10.472 . . . c) = (6, 10). Indeed, these val-
ues for the first five P positions match with those in the table.

This theorem also helps explain a few patterns which show up in

the table above. We have φ2 = (1+
√
5)2

4
= 1+2

√
5+5

4
= 3+

√
5

2
= 1 + φ,

which means that we can substitute for φ2 to get a different form for
the P positions: (bφnc, bφ2nc) = (bφnc, b(φ+1)nc) = (bφnc, bφnc+n).
Looking at the table, we can indeed see that bn = an + n does hold
within the table. Our calculation shows that this remains true for
triples (an, bn, n) beyond the table. Another pattern we may notice
is that no positive integer shows up in the table more than once. It
makes sense in the context of Wythoff’s game why two P positions
can’t share a number since we can’t move from a P position to another.
However, it is not immediately obvious why this should result from our
explicit formula.

Interestingly, our formula has connections with results in number
theory that explain our previous observation. The following is often
known as Beatty’s theorem:

Theorem 6. Given two irrational numbers (r, s) such that r, s > 1
and 1

r
+ 1

s
= 1, the sequences brc, b2rc, b3rc, . . . and bsc, b2sc, b3sc, . . .

contain all positive integers exactly once between them.
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Two proofs of this theorem can be found here: [Bea+27]. We can
quickly check that φ and φ2 satisfy the conditions for (r, s): they are
both irrationals greater than 1, and dividing both sides of φ2 = φ + 1
by φ2 gives 1 = 1

φ
+ 1

φ2
. This explains why the non-(0, 0) P positions

of Wythoff’s game contain every positive integer exactly once, and
could be useful for proving Theorem 4. We can also use the results of
this theorem to give a better recursive formula for P positions:

Corollary 7. We define mex(a1, a2, . . . , an) as the smallest nonneg-
ative integer not present among ai. Then, for any P position Pn =
(an, bn), an = mex(a0, b0, a1, b1, . . . , an−1, bn−1) and bn = an + n. This
gives a recursive formula to find Pn.

This formula makes expanding the table above much simpler.

Example 8. We can easily calculate P10 and P11 using the formula.
The mex of all the values in the table is 16, since we can find every
integer from 0 to 15 in the table, so a10 = 16. This means that b10 =
a10 + 10 = 16 + 10 = 26, so P10 = (16, 26), which makes the new mex
for values in the table up to n = 10 equal to 17. So we know that
a11 = 17 and can quickly calculate that b11 = a11 + 11 = 17 + 11 = 28,
giving us P11 = (17, 28).

While this formula requires a table of existing P positions, it is a very
fast way to calculate new ones. We now know how to play individual
Wythoff’s game positions of any size, but we still don’t know how
to play in a sum of positions, or in positions with more than two piles.

4. Sprague-Grundy Values and Sums of Wythoff’s games

To figure out how to play in sums of Wythoff’s game positions,
we need to first know two things: how to win at nim, and the Sprague-
Grundy theorem. To learn how to win the game of nim, we must first
define an operation ⊕ known as the nim sum:

Definition 9. For numbers a1, a2, . . . , an, the operation a1⊕a2⊕· · ·⊕an
equals a number b which is determined by the binary representations
of a1, a2, . . . , an. Each digit in the binary representation of b is a 1 if
the total of 1s in the same position among ai is odd, while the digit is
0 if the total is even.

Taking the nim sum is the same as adding numbers in binary without
carrying over to the next column. Note that x⊕ x = 0 for values of x
we can peform a nim sum on, since adding two 1s or 0s always gives a
0 in the nim sum system.
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Example 10. Say we wanted to compute 2 ⊕ 3 ⊕ 5 ⊕ 7, starting by
expressing all the numbers in binary form. We have 2 = 10, 3 = 11,
5 = 101, and 7 = 111. Using those representations, we can figure out
the digits in the binary representation of our answer. There are 3 1s in
the 20 position, 3 1s in the 21 position, and 2 1s in the 22 position, so
our answer is 011 = 3.

Now that we are familiar with nim sums, we can introduce the fol-
lowing, known as Bouton’s theorem:

Theorem 11. For a nim position with piles of size n1, n2, . . . , nk, the
position is in P if n1⊕n2⊕· · ·⊕nk = 0, and in N otherwise [Bou01].

This theorem gives us the winning strategy for nim, which is: get the
nim sum of the position down to 0 and keep it there. So for our previous
example of (2, 3, 5, 7), we know the piles nim sum to 3, so removing the
pile of size 3 would leave the position at 0 and is a winning move. Now
we that we know the winning strategy for nim, we can introduce the
Sprague-Grundy theorem and see why it is helpful for analyzing sums
of other impartial games :

Theorem 12. ([Spr35], [Gru39]) Given any impartial game G, the
game is equivalent to a nim pile of size n, which we write as ∗n. We
call n the Grundy value G(G) of the game.

This theorem is very useful for analyzing sums of impartial games,
since we can turn them into equivalent nim positions which are easier
to analyze. The only catch is that we need a quick way to actually
determine G(G) for any game G, which we can use the following rule
for:

Theorem 13. Given an impartial game with options {∗n1, ∗n2, . . . , ∗nk},
that game is equal to ∗m, where m = mex(n1, n2, . . . , nk).

Proof. We aim to show that {∗n1, ∗n2, . . . , ∗nk} = ∗m, which we can
do by adding the two games and showing that it is a P position, since
if they are equal then we should have m⊕m = 0. The first player has
two options in the game {∗n1, ∗n2, . . . , ∗nk} + ∗m, moving in ∗m to
some ∗m′ with m > m′, or moving to one of the ni. In the first case,
the second player can counter by moving to an ∗ni such that ni = m′,
which leaves the position at 0, winning them the game. Note that this
will always be possible because m is the first number not equal to any
of the ni and m > m′. In the second case, the second player can move
∗m to ∗ni if m > ni to get a P position and win. Otherwise, if ni > m,
then the second player can move in ∗ni to ∗m, which still leaves a P
position. Note that we also have ni 6= m for all ni by our definition
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of m. Thus the game {∗n1, ∗n2, . . . , ∗nk} + ∗m is a P position, which
means {∗n1, ∗n2, . . . , ∗nk} = ∗m. �

This gives us a recursive method for calculating Grundy values, start-
ing with G(0, 0) = 0 since mex() = 0. We can use our ”queen on
a board” game to visually model the Grundy values of Wythoff’s
game, since every square the queen can occupy represents a unique po-
sition. Using the mex rule we can fill out the first few Grundy values,
winding up with the following [AN09]:

10 11 9 8 13 12 0 15 16 17 14
9 10 11 12 8 7 13 14 15 16 17
8 6 7 10 1 2 5 3 4 15 16
7 8 6 9 0 1 4 5 3 14 15
6 7 8 1 9 10 3 4 5 13 0
5 3 4 0 6 8 10 1 2 7 12
4 5 3 2 7 6 9 0 1 8 13
3 4 5 6 2 0 1 9 10 12 8
2 0 1 5 3 4 8 6 7 11 9
1 2 0 4 5 3 7 8 6 10 11
0 1 2 3 4 5 6 7 8 9 10

If we imagine the table above to be a board, then each square contains
the Grundy value of a queen placed on that square. We can see that
the mex rule can be used to check the values in the board and expand
the board. Our options from any given square are the squares to the
left, the square below, and the squares diagonally left and below. That
means the Grundy value of a square is given by the mex of the values
for the squares corresponding to its options.

Example 14. We can begin to construct the Grundy values for more
squares by following the mex rule. Say we wanted to figure out G(1, 11),
which would be right above the 11 in the top row. Note that G =
(0, 11) = 11 since its options cover all Grundy values from from 0 to
10. With that in mind, we can see that the Grundy values covered in
the options of (1, 11) are everything from 0 to 8, as well as 10 and 11,
so G(1, 11) = mex(0, 1, 2, . . . , 8, 10, 11) = 9.

This table allows us to figure out a winning strategy for sums of
Wythoff’s nim positions, such as ((3, 5), (2, 4)). We separate (3, 5)
and (2, 4) to indicate that we are not allowed to take stones from say,
the pile of 5 and the pile of 2 on the same turn. The strategy is also
quite simple: use Grundy values to follow the winning nim strategy.

Example 15. We use the table to find a winning move in ((3, 5), (2, 4)).
First we convert the two smaller games into nim piles by looking up
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their Grundy values, finding that G(3, 5) = 0 and G(2, 4) = 3. So the
equivalent nim game is equal to 0⊕ 3 = 3, meaning the first player has
a winning strategy. Since we want the position to be 0 after our move,
the winning move is to move (2, 4) into a position with Grundy value 0,
which we can see on the table is (1, 2). The position is now two games
which are P positions in Wythoff’s nim, so the first player can just
follow those winning strategies in each part, taking care to always move
in the same component as the opponent. Thus, ((3, 5), (2, 4)) is an N
position, and removing 3 stones from the pile of 4 is a winning first
move.

Now we can begin to consider how to win when the rules themselves
have been slightly altered, such as allowing 3 piles at most rather than
2.

5. Wythoff’s game With Three Piles

When analyzing Wythoff’s game positions with more than 2 piles
allowed, there are two different rulesets we can employ: giving the
ability to take an equal number of stones from all piles, or not giving
that ability. The first option may seem a little more natural, but also
quickly ramps up the complexity as we start getting more piles. The
second option is essentially a different type of sum than the one shown
in the previous section. We will be focusing on the three-pile game
where taking from all three piles in a turn is allowed if the same amount
is taken from all three.

Going back to our analogy of a queen on a flat board, we can think of
our three-pile game as a queen inside a cube. Whereas in 2 dimensions
the queen had only 3 directions to move in, the queen in a cube has
7 directions she can move in, making the analysis of three piles much
more complex. Still, we can figure out rules governing the P positions
in the three-pile game. To start, all of the P positions from the two-pile
game are still P positions of the form (0, a, b). We have the following
rules that three-pile P positions (a, b, c) with a ≤ b ≤ c must satisfy:

• There must be no previous P positions of the form (a, b, c′),
(a, b′, c), or (a′, b, c).
• If a previous P position is of the form (a, b′, c′) where b′ 6= b, c

and c′ 6= b, c, then it must also be true that c′− b′ 6= c− b. Two
equivalent statements can be made for previous P positions of
the form (a′, b, c′) and (a′, b′, c), and all three statements must
be true.
• For all P positions (a′, b′, c′) before (a, b, c), there must not be

a number n such that (a′ + n, b′ + n, c′ + n) = (a, b, c).
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These rules follow directly from the available moves in three-pile Wythoff’s
nim and our knowledge of P and N positions. The first rule must be
true because otherwise we would be able to remove some stones from
a pile and end up with another P position, which can’t be possible be-
cause all moves should go to N positions. The second and third rules
cover moves which remove stones from 2 piles and 3 piles, respectively.
Using these rules we can begin to find P positions with three piles of
stones, of which the first four are (1, 1, 4), (1, 3, 3), (2, 2, 6) and (3, 4, 4).
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