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1 Introduction

An impartial combinatorial game is a 2-player combinatorial game in which the same
moves are available to each player. For example, the game Nim consists of many piles
of tokens, and any number of tokens can be removed from a particular pile by either
player. As we have learned in [Rub], to determine whether the next player to move
will win in a Nim game, we shall compute the XOR sum of the number of tokens in
all piles in the game. If the result is greater than 0, the next player to move can win;
the winning strategy is to make a move that changes the XOR sum of all the piles
to 0. On the other hand, if the result is equal to 0, then the next player to move will
lose, assuming both players play optimally.

In this paper, we will analyze in a similar manner two other impartial combinatorial
games: Fibonacci Nim and Wythoff’s Game.

2 Impartial Games

Since we are studying impartial games, it would be useful to first review some basics
about impartial combinatorial games:

• An N position is a game that is winning for the next player.

• A P position is a game that is winning for the previous player (or losing for the
next player).

• The only outcomes of an impartial combinatorial game are N and P .

We also have our favorite Partition Theorem, which will be very useful in this paper
(see pg. 50 of [Rub]). In addition, we can see that the Sprague-Grundy Theory can
be used to analyze our games. Before we review the Sprague-Grundy Theory, we will
need to define the ”minimal excludant” (mex) operation:

Definition 2.1. Let S be a finite set of non-negative integers. Then, mex(S) is the
least non-negative integer that is not in S.

Here are some of the basic rules of the Sprague-Grundy Theory:

1. We can assign a non-negative Grundy value to each game position.

2. If the Grundy value of a game is equal to 0, that game is a P-position. Else, the
game is an N -position.
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3. The Grundy value of a game can be found recursively by performing the mex
operation on the Grundy values of its options.

4. To derive the Grundy value of a disjoint sum of games, we take the Nim sum
(⊕) of the components.

3 Fibonacci Nim

Definition 3.1. Fibonacci nim is an impartial combinatorial game played on a
single heap of, say, n stones. To start, the first player can remove any number of
stones between 1 and n− 1. After the first move, any player can move as long as the
following condition is satisfied: if the previous player removed r stones, then the next
player can remove at most 2r stones. The last player to make a move wins.

Example 3.1.1 (Demonstration of Fibonacci Nim). We start with a heap of 5 stones.
Left takes 1 stone, leaving 4 stones. Since Left took 1 stone, Right can take at most
2 stones on his turn. Right takes 1 stone, leaving 3 stones. Since Right took 1 stone,
Left can take at most 2 stones. Left takes 2 stones, leaving 1 stone. Right takes the
last stone and wins the game.

This game is not as simple as the game Nim. In Nim, the players can remove any
number of stones from a pile. However, in Fibonacci Nim, the number of stones that
each player can remove on their turn is limited by how many stones the previous player
removed. So, a game position depends not only on how many stones are in the heap
but also on how many stones the next player can remove. Hence, we can encapsulate
a game position as follows:

Definition 3.2. Let the ordered pair (n, r) represent a game position, where n is the
number of stones in the heap, and r is the maximum number of stones the next player
can remove from that heap.

Given a game (n, r), we can list out the possible moves that the next player can
make: the next player could take either 1 stone, 2, stones, ..., or r stones. So, we
can represent the game (n, r) in terms of option notation, where the options are also
ordered pairs as defined in Definition 3.2:

(n, r) = {(n− k, 2k) : 0 < k ≤ r} (1)

Each option of (n, r) is of the form (n− k, 2k) because, if the next player removes
k stones from the heap, the total number of stones left would be n− k, and the player
after him/her can remove up to 2k stones. Every game with n stones starts out as
(n, n− 1).

We can apply the Sprague-Grundy theory to analyze Fibonacci Nim. Since we
know the options of each game state, we can recursively find the Grundy value of a
game state by computing the mex of the Grundy values of its options:

G(n, r) = mex(G(n− k, 2k) : 0 < k ≤ r) (2)

Using this recursive method, we can build a table of Grundy values, as shown below
in Figure 1. Note that the Grundy values are omitted for the game positions where
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n < r because these games are pretty simple: the first player is able to remove all of
the stones in the pile and win in the first turn itself.

Figure 1: Table of Grundy values for Fibonacci Nim, taken from [LS15]

In this paper, we will only focus on finding the N and P positions, or the positions
whose Grundy value is greater than 0 and the positions whose Grundy value is equal
to 0, respectively.

In order to find the N and P positions in Fibonacci Nim, we have Zeckendorf’s
theorem:

Theorem 3.1 (Zeckendorf’s theorem). Every positive integer has a unique representa-
tion as a sum of distinct Fibonacci numbers such that no two numbers are consecutive
in the Fibonacci number sequence. This representation of a number is called its Zeck-
endorf representation.

See [21] for the proof of Zeckendorf’s theorem.
Next, we will introduce new notation. First, we write Fn to denote the nth Fi-

bonacci number. Also, we define zi(n) be the ith smallest element in the Zeckendorf
representation of n. For example, z1(4) is 1, and z2(26) = 21. We will soon learn in
Theorem 3.2 that, to win in a Fibonacci Nim game (n, r), we must remove z1(n)
from the pile of n stones (that is, if z1(n) ≤ r).

Theorem 3.2. G(n, r) = 0 if and only if r < z1(n).

First, we need to prove a lemma that will help us prove Theorem 3.2:

Lemma 3.3. Let n be an integer greater than 1, and k be an integer such that 1 ≤
k < z1(n). If z1(k) = Ft, then z1(n− k) is either Ft+1 or Ft−1.
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Proof from [LS15]. We prove this through induction on the number of elements in the
Zeckendorf representation of k.

Let’s start with the base case, or when k is a Fibonacci number itself. Let k be Ft.
Then, suppose that z1(n) = Fs. Then, there are two cases related to the parity of s
and t: s ≡ t (mod 2) and s 6≡ t (mod 2).

If s ≡ t (mod 2), then we can write t as s− 2d for some d ≥ 1, and we have

Fs − k = Fs − Fs−2d

= (Fs−1 + Fs−3 + Fs−5 + ...+ Fs−2d+3 + Fs−2d+1 + Fs−2d)− Fs−2d

= Fs−1 + Fs−3 + Fs−5 + ...+ Fs−2d+3 + Fs−2d+1

Here, we have found the Zeckendorf representation of Fs − k. To find the Zeckendorf
representation of n − k, we can rephrase n − k as (n − Fs) + (Fs − k). We know the
representation of Fs−k, and that the greatest element in this representation has to be
less than Fs. Next, we can derive the representation of n−Fs by removing Fs from the
representation of n, and we see that the least element in the representation of n− Fs

must be greater than Fs (since z1(n) = Fs). So, because the representations of n− Fs

and Fs−k don’t overlap, we can “concatenate” the two representations together to get
the representation of n− k. Finally, we can say that, in the Zeckendorf representation
of n− k,

z1(n− k) = z1(Fs − k)

= Fs−2d+1

= Ft+1

Now let’s explore the other case, where s 6≡ t (mod 2), then we can write t as
s− 2d− 1 for some d ≥ 0, and we have

Fs − k = Fs − Fs−2d−1

= (Fs−1 + Fs−3 + Fs−5 + ...+ Fs−2d+1 + Fs−2d−1 + Fs−2d−2)− Fs−2d−1

= Fs−1 + Fs−3 + Fs−5 + ...+ Fs−2d+1 + Fs−2d−2

Again, we have found the Zeckendorf representation of Fs − k, and we can observe
that z1(Fs−k) = Fs−2d−2. As we found in the previous case, we can see that z1(n−k)
must be equal to z1(Fs − k), so we get that

z1(n− k) = z1(Fs − k)

= Fs−2d−2

= Ft−1

Now, assume that the induction hypothesis holds when the Zeckendorf representa-
tion of k has p− 1 elements. Then we have to prove that, when the representation of
k has p elements, z1(n− k) = Ft+1 or Ft−1.

Let z1(k) be Ft. We get that z1(k − z1(k)) = z2(k) ≥ Ft+2. Since k − z1(k) has
p − 1 parts, we know that z1(n − (k − z1(k))) ≥ Ft+1 from the induction hypothesis,
and consequently we get that

z1(n− (k − z1(k))) ≥ Ft+1 > Ft = z1(k)

=⇒ z1(n− k + z1(k)) > z1(k)
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This inequality is really of the form z1(n
′) > k′, where n′ is n− k + z1(k) and k′ is

z1(k). Since k′ has only one component in its own Zeckendorf representation, we can
use the base case to show that z1(n

′ − k′) = Ft+1 or Ft−1. We can simplify n′ − k′ to
n− k, and we get that z1(n− k) = Ft+1 or Ft−1. �

Now, let us prove Theorem 3.2:

Proof from [LS15]. Let P be the set of games (n, r) such that z1(n) > r, and let N
be the set of games (n, r) such that z1(n) ≤ r. We need to show that:

1. In every game in P, every move leads to a game in N .

2. In every game in N , there is at least one move to a game in P.

If these two statements are true, then N is the set of all N positions, and P is
the set of all P positions, according the the Partition Theorem.

In the first part of the proof, we need to show that, in a game (n, r) with z1(n) ≤ r,
there must be a move to a game (n−k, 2k), by removing k stones, such that z1(n−k) >
2k. We show that z1(n− z1(n)) > 2z1(n), where k is substituted with z1(n). Let z1(n)
be Ft. Since the Zeckendorf representation of a number must not contain consecutive
Fibonacci numbers, the value of z2(n) must be at least Ft+2, so we get that

z2(n) ≥ Ft+2 = Ft+1 + Ft > 2Ft = 2z1(k)

z2(n) > 2z1(k)

We also know that z2(n) = z1(n− z1(n)). Substituting, we get

z1(n− z1(n)) > 2z1(k)

Hence, when k = z1(n), removing k stones from game (n, r) is a move to a game in
P.

In the second part of the proof, we must show that, in a game (n, r) with z1(n) > r,
all possible moves must lead to a game (n − k, 2k) such that z1(n − k) ≤ 2k. Given
that z1(n) > r and that all possible values of k must be less than or equal to r, we
get that k < z1(n). Thus, by Lemma 3.3, if we let z1(k) be Ft, then z1(n− k) ≤ Ft+1.
Using this information, along with the fact that Ft = z1(k) ≤ k, we get that

z1(n− k) ≤ Ft+1 = Ft−1 + Ft ≤ 2Ft ≤ 2k

=⇒ z1(n− k) ≤ 2k

Hence, for every value of k, or, for every move that the next player can make, that
move will be to a game in N .

Finally, we reach the conclusion that N must be the set of all N -positions, and
P must be the set of all P-positions, due to the Partition Theorem. �

Here, we have shown that, given a game (n, r), the winning strategy for the next
player is to remove z1(n) stones from the heap of n stones, and this is possible only
when z1(n) ≤ r. Otherwise, the next player to move will lose, assuming that both
players play optimally.
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Corollary 3.3.1 (from [LS15]). In the game (n, n− 1), which is the starting position
of a game with n stones, G(n, n− 1) = 0 if and only if n is a Fibonacci number.

For the case that Fibonacci Nim is played on multiple heaps of stones, we could
apply the Sprague-Grundy theory in order to analyze such games, but that can only be
done under the condition that each heap is completely independent of each other. In
Fibonacci Nim, the possible moves that the next player can make not only depends
on the physical state of the game but also on the moves that have been made before.
This gives us two ways to restrict the options of the players:

1. Global move dynamic: If the previous player removed r stones from a heap, then
the next player can remove only at most 2r stones from any heap.

2. Local move dynamic: As the game progresses, store the move history for each
heap. For a given heap, if the player who played last in it (which could be either
Left or Right) removed r stones from that heap, then the next player can remove
at most 2r stones from that particular heap. Note that the number of stones
that can be removed from a heap can vary across all heaps.

Using the local move dynamic allows us to treat each heap as disjoint components,
as opposed to the global move dynamic, so we can apply the Sprague-Grundy theory
with the local move dynamic. We can evaluate the Grundy value of each component,
and, to find the Grundy value of a disjoint sum of components, we can take the Nim
sum (⊕) of the Grundy values of the components.

4 Wythoff’s Game

Definition 4.1. Wythoff’s game is an impartial combinatorial game played on
two heaps of stones. Each player, on his/her turn, has one of the following choices:
removing stones from the first heap, removing stones from the second heap, or removing
the same number of stones from both heaps. The last player to make a move wins.

Example 4.1.1 (Demonstration of Wythoff’s Game). We start with two heaps, one
with 5 stones and one with 8 stones. Left removes 1 stone from each pile, leaving 4
and 7 stones. Right removes 3 from the first pile, leaving 1 and 7 stones. Left removes
5 stones from the second pile, leaving 1 and 2 stones. Right removes 1 stone from the
second pile, leaving 1 and 1 stones. Left takes both stones and wins the game.

This game has an analogous representation with a queen on a chessboard. The
queen’s row number represents the number of stones in the first heap, and the queen’s
column number represents the number of stones in the second heap. The players can
either move the queen left, down, or diagonally towards the bottom-left corner of the
board. The player who is unable to make a move loses, or, in other words, the player
who makes the move to the bottom-left corner of the board wins. A picture of this
game is shown below in Figure 2:
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Figure 2: Wythoff’s Game on a chessboard, taken from [Niv04]

We can encapsulate a game state as follows:

Definition 4.2. Let the ordered pair (x, y) represent a game position, where x the
number of stones in the first heap, and y is the number of stones in the second heap.

Notice that the game (x, y) can also be thought of as the position of the queen
on the chessboard. In this paper, when we describe an arbitrary game (x, y), we will
frequently refer to x as the column number and y as the row number.

Given a game (m,n), the next player to move can either take a number of stones
from the first pile, a number of stones from the second pile, or the same number of
stones from both piles. So, we can definitely create an option set for this game:

(m,n) = {(m− k, n) | 1 ≤ k ≤ m}
∪ {(m,n− k) | 1 ≤ k ≤ n}
∪ {(m− k, n− k) | 1 ≤ k ≤ min(m,n)}

(3)

Since Wythoff’s Game is an impartial combinatorial game, we can apply the
Sprague-Grundy theory for analysis. Since we know the options of each game state,
we can recursively find the Grundy value of a game state by computing the mex of
the Grundy values of its options:

G(m,n) = mex({G(m− k, n) | 1 ≤ k ≤ m}
∪ {G(m,n− k) | 1 ≤ k ≤ n}
∪ {G(m− k, n− k) | 1 ≤ k ≤ min(m,n)})

(4)

Using this recursive method, we can build a table of Grundy values, as shown below
in Figure 3. Notice that the table is symmetric about the y = x axis, because a game
(m,n) is virtually identical to the game (n,m).
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Figure 3: Table of Grundy values for Wythoff’s Game, taken from [Niv04]

So, we can recursively find a Grundy value for a particular position. But, con-
versely, we can also find the set of positions that have a particular Grundy value. This
set of positions will be formalized in Definition 4.3:

Definition 4.3 (from [BF90]). Let Tj be the sequence of game positions, in the
form of ordered pairs, that have the Grundy value of j. This set will be written
as {(a0j, b0j), (a1j, b1j), (a2j, b2j), ...}, where the subscripts indicate the index of the
game position in the sequence and the superscripts indicate the Grundy value of the
position. We assume that bi

j ≥ ai
j for all values of i and j, and, when j is fixed,

we will omit the superscripts. Also, let Dj = {b0 − a0, b1 − a1, ...}. Dj contains the
differences between the a’s and b’s for the sequence Tj.

We have a recursive algorithm to generate the sequence Tj with all pairs (a, b) such
that G(a, b) = j. Suppose that, for a given k, the previous k − 1 pairs in Tj have
already been constructed. Let p = mex(al, bl : 0 ≤ l < k), and suppose furthermore
that the previous sequences Ti with i < j have been constructed up to the point that
each Ti already has p in some of its pairs. We will construct the next pair (ak, bk) using
the following algorithm, known as the Wythoff-Sprague-Grundy (WSG) algorithm:

Theorem 4.1 (WSG Algorithm, from [BF90]). To generate the kth element of the
sequence Tj, do the following steps:

1. Set p to mex(al, bl : 0 ≤ l < k) and q to mex(bl − al : 0 ≤ l < k).

2. If (p, p+q) does not appear in any sequence Ti for i < j and p+q does not appear
as the second term in any pair in Tj constructed so far, then the kth element of
the sequence Tj will be set to (p, p+ q). Exit.

3. Else, replace q with the next smallest integer that is not in Dj. Return to Step
2.
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The full proof of the validity of this algorithm will not be mentioned in this paper,
but it can be found in [BF90]. Here is a more intuitive, but incomplete, explanation.
By setting p to mex(al, bl : 0 ≤ l < k) in Step 1, we fix our new coordinate to lie in
the pth column, and then we look for which row number to give the coordinate. We
first assign p, the column number, to mex(al, bl : 0 ≤ l < k) and q, the ”diagonal
number”1, to mex(bl − al : 0 ≤ l < k) because we do not want our new coordinate to
lie in the same column or diagonal as our previous pairs in Tj, respectively. Keep in
mind that the positions (al, bl) and (bl, al) both have the Grundy value of j. If our
new coordinate were to lie in the same column or diagonal as the previous pairs, there
would then be two positions with a Grundy value of j in the same column/diagonal,
which is inherently impossible because of Equation 4. Then, in Step 2, we check if the
coordinate already has a smaller Grundy value in its place, by searching for it in earlier
Ti’s, and we check if the coordinate shares a row with a previous pair in Tj. If either
of these conditions are true, we must find a new row number to give our coordinate,
and so we move on to Step 3. By reassigning q to the next smallest integer not in
Dj, we change the coordinate’s diagonal to the next diagonal that is not ”taken” by a
previous pair in Tj.

In this paper, we will only focus on finding the N and P positions, or the positions
whose Grundy value is greater than 0 and the positions whose Grundy value is equal
to 0, respectively.

We take the algorithm in Theorem 4.1 and simplify it so that we only generate the
sequence T0, or the sequence of P positions.

Theorem 4.2. To generate the pairs in the set T0, do the following steps:

1. Append the game position (0, 0) to T0.

2. Initialize the variable k to 1.

3. Repeat the following indefinitely:

(a) Set p to mex(al, bl : 0 ≤ l < k)

(b) Insert (p, p+ k) in T0.

(c) Increment k by 1.

(d) Loop back to step (a).

Using this algorithm, we find a way to compute the kth pair in T0 as follows,
assuming that the previous k − 1 pairs are already constructed:

ak = mex(al, bl : 0 ≤ l < k) (5)

bk = ak + k (6)

In this simplified form of the WSG algorithm, notice how we subtly remove the
step where we check if the position (p, p + k) shares a row with an earlier position
in T0 and, instead, we directly set (p, p + k) to be (ak, bk). This is valid because it is
guaranteed that, when we construct new pairs, they must automatically be in different
rows than the previous pairs. If we write the sequence of a’s as {an} and the sequence
of b’s as {bn}, it suffices to show that the sequence {bn} is strictly increasing.

1The ”diagonal number” of a coordinate is the number that represents the diagonal that the
coordinate lies in. It is found by taking the difference of the second number and the first number.
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Proof for {an} and {bn} being strictly increasing. First, we have to prove that the se-
quence {an} is strictly increasing. Proving that {an} is strictly increasing is equiv-
alent to showing that, for every n, an+1 > an. So, let’s assume the inverse that
an+1 ≤ an, and we show through contradiction that this is impossible. The in-
equality an+1 ≤ an breaks down into two cases: an+1 = an and an+1 < an. Let
S = {a0, b0, a1, ..., an−1, bn−1}, and remember that

an = mex(S) (7)

and
an+1 = mex(S ∪ {an, bn}). (8)

The first case immediately leads to a contradiction because of Equation 8; an+1

cannot possibly be equal to any of the previous a’s or b’s by definition. To disprove
the second case, we see that, according to Equation 7, the set S must contain all of
the numbers less than an due to the definition of the mex operation. So, if we assume
that an+1 < an, we deduce that an+1 ∈ S. Again, we reach a contradiction since, by
Equation 8, an+1 cannot be in S. Thus, we have proven that the sequence {an} is
strictly increasing. Because bn = an + n, it follows that bn > an when n > 0, and we
can see that {bn} must be strictly increasing too.

�

We can observe some other characteristics of the sequences {an} and {bn}. We see
that {an} and {bn} are almost-disjoint sequences by construction, with the exception
of 0 ∈ {an} and 0 ∈ {bn}. When we assign an to mex(al, bl : 0 ≤ l < n), we prevent
any element in {an} from being equal to any of the previous elements in {an} and {bn}.
Also, when we assign bn to an +n, it is guaranteed that bn > an and that bn is greater
than all of the previous ai’s and bi’s due to the fact that {an} is strictly increasing,
{bn} is strictly increasing, and bn > an for n > 0, so we know that bn does not appear
earlier as an element in either sequence. We can also show that {an} and {bn} must
contain every positive integer exactly once. By setting an to mex(al, bl : 0 ≤ l < n),
we essentially append to {an} the missing integers that have not been encountered be-
fore in the previous pairs, and so the mex operation serves as a “catch-all” for missing
integers. Furthermore, since {an} and {bn} are both strictly increasing, there cannot
be any duplicate integers within each sequence, and we know that {an} and {bn} do
not share any elements other than 0, so there is exactly one occurrence of a positive
integer in either sequence.

We can verify that {(a0, b0), (a1, b1), ...} is indeed the set of all P positions using
the Partition Theorem.

Proof of P positions, from [Niv04]. Let the set

P = {(a0, b0), (a1, b1), ...} ∪ {(b0, a0), (b1, a1), ...},

and let N be the set that contains all the other positions. We will show the following
two parts:

1. Every move from a game in P will lead to a game in N (or that no move from
a game in P will lead to a game in P).
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2. A move from a game in N will lead to a game in P.

To prove the first part, suppose that we start a game at the P position (ak, bk).
By the construction of the pairs {(a0, b0), (a1, b1), ...}, it is known that any move from
(ak, bk) will not reach another position in P.

To prove the second part, suppose we start in an N position (x, y), with x ≤ y.
Since the sequences {an} and {bn} contain each non-negative integer at least once, we
know that either x = bn or x = an. If x = bn for some n, then we can move to (x, an),
which is in P. And, if x = an for some n, there are two cases:

1. If y > bn, then we can move to (x, bn) = (an, bn), which is in P.

2. If x ≤ y ≤ x+(n−1) = bn−1, then let m = y−x < n. The number m represents
the diagonal that (x, y) is in, and we can see that the pair (am, bm) ∈P also lies
in the same diagonal since bm − am = m. Furthermore, (am, bm) comes before
(an, bn) in the sequence T0 because m < n, so we know that am < an and bm < bn.
Therefore, we are able to move along the diagonal from (x, y) to (am, bm), a P
position.

Hence, we have proven that the pairs (an, bn), as described in Equations 5 and 6,
are the P positions.

Now, we use a crucial theorem to derive our final result:

Theorem 4.3 (Beatty’s Theorem, from [Niv04]). Let α, β > 1 be irrational numbers
such that α−1 +β−1 = 1. Then the sequences {bαnc}∞n=1 and {bβnc}∞n=1 contain every
positive integer exactly once.

See the proof of this theorem in [Niv04]. This theorem allows us to construct the
two sequences {an} and {bn} by choosing values for the irrationals α and β. Let the
sequences {a′n} be {bαnc}∞n=1 and {b′n} be {bβnc}∞n=1. If we pick arbitrary values for
α and β such that α < β and such that they satisfy the conditions above, we can see
that

a′n = mex(a′l, b
′
l : 0 ≤ l < n). (9)

Otherwise, an integer would either be repeated or missing in the sequences {a′n} and
{b′n}.

In finding the sequences {an} and {bn}, we also need another condition to be

satisfied: bn = an + n for all n. Now, let φ be the golden ratio, or 1+
√
5

2
. If we set α to

φ and β to φ2, we see that this condition, as well as the condition in Beatty’s theorem,
is satisfied because of the fact that φ2 = φ+ 1. To verify that it satisfies the condition
in Beatty’s theorem, we have

φ−1 + (φ2)−1 =
1

φ
+

1

φ2
=
φ+ 1

φ2
=
φ2

φ2
= 1

We also show that, when α = φ and β = φ2, b′n = a′n + n:

b′n =
⌊
φ2n

⌋
= bφn+ nc
= bφnc+ n

= a′n + n
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So, when we assign α to φ and β to φ2, we know that a′n = mex(a′l, b
′
l : 0 ≤ l < n)

and that b′n = a′n + n. Therefore, we can conclude that an = a′n and bn = b′n for all n.
In other words, we get that the set of all P positions is

{(bφnc ,
⌊
φ2n

⌋
)}∞n=0 ∪ {(

⌊
φ2n

⌋
, bφnc)}∞n=0.

�

We have found the P positions of Wythoff’s Game. So, if we start a game that is
an N position, the winning strategy is to move to a position of the form (bφnc , bφ2nc)
or of the form (bφ2nc , bφnc).
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