
THE SURREAL NUMBERS AND OMNIFIC INTEGERS

CALEB DASTRUP

In this paper I define a certain type of sum of surreal numbers indexed by ordinals. I
prove that each surreal number has a unique Conway normal form, a representation as the
type of sum mentioned above. I give a method for calculating the Conway normal form of a
surreal number given the normal forms of its options. I define the omnific integers and prove
a way of determining whether a surreal number is an integer given its Conway normal form.
I prove some results on omnific integers. I will assume basic familiarity with the surreal
numbers.

1. Surreal Numbers

Theorem 1.1. We can express each surreal number x uniquely in the form∑
β<α

ωyβ · rβ

where α is some ordinal, the numbers rβ are nonzero real numbers, and the yβ’s are a
decreasing sequence of surreal numbers (i.e. if β < β0 < α, then yβ > yβ0 ). A sum of this
form is called the Conway Normal Form of x.

To make this theorem clear, we need to define the infinite sum it includes.

Definition 1.2.∑
β<α

ωyβ · rβ =

{
(
∑
β<α′

ωyβ · rβ) + (ωyα′ · rα′)L

∣∣∣∣∣ (∑
β<α′

ωyβ · rβ) + (ωyα′ · rα′)R

}
for all ordinals α′ < α. In other words, this sum is really an ordinal sum: the options are
to move in a term of the sum and delete all terms to the right. Note that the terms must
be in their usual form (as defined by multiplication and the omega map): from ω − 2, Left
may not move to ω − 1 even though ω = {ω − 1 | ω + 1}. The valid moves are to reals r.
However, the result does not depend on the form of the coefficients or exponents.

This definition works because the ordinal involved decreases with each step. It is still
required to check that the result is actually a number.

Lemma 1.3. ωa is infinite for all positive a.

Proof. Since a is positive, it must have a nonnegative left option. If a has a left option 0, ωa

has left options rω0 for all reals r, so ωa is infinite. Otherwise, a has a positive left option,
so ωa has a left option ωaL which, inductively, is infinite, so ωa itself is infinite. ■

Lemma 1.4. If a < b, ωa is infinitesimal with respect to ωb.

Proof. For all reals r, ωb − rωa = ωb−a(ωa − r), which is infinite by the previous lemma. ■
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Lemma 1.5. When in the usual form, (ωa · r)R − ωa · r is on the order of a real multiple
of ωa, and so is ωa · r − (ωa · r)L (for certain options which dominate the ones with larger
differences). In fact, when x is real and y is an omega power with a left option, xy ={
xLy + xyL − xLyL

∣∣ xRy + xyL − xRyL
}

.

Proof. This is easily seen by using the definition of multiplication and omega map. ■

Now we are ready to show that the infinite sum defined above is a number. By induction
on α, all of the options are numbers; thus it remains to show all the left options are less
than all the right options. Consider the left option (

∑
β<α0

ωyβ · rβ) + (ωyα0 · rα0)
L and

right option (
∑

β<α1
ωyβ · rβ) + (ωyα1 · rα1)

R. WLOG let α1 > α0 (α1 < α0 is similar, and
α1 = α0 is trivial). Then (

∑
β<α1

ωyβ · rβ) has as a right option, and so is greater than,
(
∑

β<α0
ωyβ · rβ) + (ωyα0 · rα0)

R. The difference between this and the original left option is
(ωyα0 ·rα0)

R−(ωyα0 ·rα0)
L, which is positive and on the order of ωyα0 , making it infinite relative

to ωyα1 . Thus (
∑

β<α1
ωyβ · rβ) is greater than (

∑
β<α0

ωyβ · rβ) + (ωyα0 · rα0)
L by an amount

infinitely greater than −(ωyα1 · rα1) > −(ωyα1 · rα1)
R, so (

∑
β<α1

ωyβ · rβ) + (ωyα1 · rα1)
R >

(
∑

β<α0
ωyβ · rβ) + (ωyα0 · rα0)

L, and thus all right options are greater than all left options,
and the infinite sum is a number.

It can be shown fairly easily that
∑

β<α+1 ω
yβ · rβ = (

∑
β<α ω

yβ · rβ) + ωyα · rα, and more
generally,

∑
a<α+β ω

ya · ra = (
∑

a<α ω
ya · ra)+ (

∑
a<β ω

y(a+α) · ra+α), allowing sums to be split
apart.

Lemma 1.6. If A < B, A ≤
{
AL

∣∣ BR
}
≤ B (AL, BR possibly representing multiple or

zero options).

Proof. A ≤
{
AL

∣∣ BR
}

means Left wins going second in
{
AL

∣∣ BR
}
− A. If right moves in

the −A to −AL leaving
{
AL

∣∣ BR
}
−AL, Left responds by moving in the other component to

AL and leaving 0. If Right moves to some BR he leaves a positive value since BR > B > A.
Thus Left wins going second.

{
AL

∣∣ BR
}
≤ B is similar. ■

Now we are ready to prove that each surreal number has a unique Conway normal form.

Proof. For a game A =
∑

β<α rβω
yβ , let Aγ = rγω

yγ . Let G =
{
GL

∣∣ GR
}

be a game.
Inductively, let each of the options of G be written in Conway normal form. We define a
new normal form K in several steps: defining the common terms, the exceptional term, and
the remaining terms.

Step 1: for each β such that there are left options GL and GR with GL
γ = GR

γ for all γ ≤ β,
Kβ = GL

β .
Step 2: Let α be the least ordinal a for which Ka is not defined. Certain options G′ may

have G′
β = kβ for all β < α. If none of these options exist, we are done. If all these options are

left options or all are right options, skip to step 3. Otherwise, both left and right options of
this type exist. Eliminate all options not of this type (they are dominated). Consider the αth
term of these options (adding a 0 term if necessary). If it is negative for all left options and
all positive for right options, then we are done. Suppose this is nonnegative (nonpositive) for
both left and right options. Then define yα =

{
a, aL

∣∣ b, bR} (
{
bL, b

∣∣ a, aR}) for exponents
a of left options and b of right options, where a is included if {r|} = ω ({|r} = −ω) for
coefficients r of the a term, aL otherwise, b included if {0|r} = 1

ω
({r|0} = − 1

ω
). If this

does not equal any a or b, let ra = 1 (−1) and we are done. Otherwise, let S be the set
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of all options of G with exponent yα of the α term. Let S ′ be the set of left options in S
with positive α + 1st coefficients and

{
e, eL

∣∣ yRα} = yα for α + 1st exponent e, e included
instead of eL if {r |} = ω or right options with negative next coefficient satisfying the same
condition, e included if {| r} = −ω. Let rα = {aL, b|c, dR} ({dR, c|b, aL}) where a, b, c, d
are coefficients in αth terms of elements of S ∩GL, S ′ ∩GL, S ′ ∩GR, S ∩GR, respectively,
unless this is not a real number. This is only possible if some b (c) is the infimum of the
right options or some c (b) is the supremum of the left options (it cannot be both or the
entire αth term would coincide, contradicting the definition of α), in which case let rα be
that value. If rα equals some a or d continue to step 3; otherwise we are done.

Step 3: Let k be the exponent of the exceptional term created in step 2. Let α be the least
ordinal for which the corresponding term of K is not defined. There right or left options of
G whose terms coincide with K for all smaller ordinals, but not both. Suppose there are left
(right) options. Consider their αth terms. If all of these are negative (positive), we are done.
If there is a left (right) option without such a term and all others have that term negative
(positive), then define yα = {| k}, rα = 1 (−1), and we are done. Otherwise, eliminate all
options for which that term is negative (positive), and let yα =

{
e, eL

∣∣ k} for exponents e of
these terms, where e is included if {r|}({|r}) = ω (−ω) for coefficients r of the ωe terms. If
this does not equal any e, let rα = 1 (−1) and we are done. Otherwise, let let S be the set of
all left (right) options of G with exponent yα of the α term. Let S ′ be the set of options in S
with positive (negative) α + 1st coefficients and

{
e, eL

∣∣ yRα = k
}
= yα for α + 1st exponent

e, e included instead of eL if {r|}({|r}) = ω (−ω) for coefficients r of the ωe terms. Let
rα =

{
aL, b

∣∣} (
{∣∣ aR, b}) where a, b are coefficients in the αth terms of elements of S, S ′. If

this does not equal any b, we are done. Otherwise, define Kβ for ordinals β > α using step
3.

The process must terminate at some ordinal because the options of G do; thus we have
defined K. Note that since

{
e, eL

∣∣ yRα} = yα for options not eliminated at the α + 1st step
forces the birthdays of the exponents to decrease, step 3 only needs to be repeated finitely
many times before the process terminates.

This formula seems more complicated than it is; essentially, the formula is to make the next
term 0 if possible; otherwise, choose a simpler exponent between that of the (coinciding) left
and right options if possible; otherwise, choose the simplest of the two; choose the simplest
possible coefficient if this allows the next exponent to be simpler than this one; otherwise,
choose a different coefficient not equal to that of the options, if possible; otherwise, continue
the process. I will give an example to clarify.

To evaluate
{
ω3 + ω2 + ω + ω

1
2

∣∣∣ ω3 + (1 + 1
2n
)ω2 + ω

}
, ω3 is a common term, so y0 = 3,

r0 = 1. There are no left and right options with the same first and second terms, so we
move to step 2. The coefficients are nonnegative for both types of options, so we define
y1 = {1 |} = 2. This does equal exponents of both left and right options. All options are
in S.

{
eL

∣∣ y1} = {0 | 2} = 1 ̸= 2, so no options are in S ′. Thus r1 =
{
0
∣∣ 1 + 1

2n

}
= 1.

This makes the exceptional term coincide with that of a left option, so we move to step 3.
We have a positive next term, ω, so we let y2 = {0 | 2} = 1. This equals the exponent of
our term, so the left option is in S. It is also in S ′, since

{
(1
2
)L

∣∣ 2} = {0 | 2} = 1. Thus
rα = {1 |} = 2. This does not equal 1, the coefficient of the option, so we are done, and the
result is ω3 + ω2 + 2ω. That this indeed equals

{
ω3 + ω2 + ω + ω

1
2

∣∣∣ ω3 + (1 + 1
2n
)ω2 + ω

}
can be checked by playing the difference.
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Now I will show G = K. The proof amounts to checking the various cases of the formula.
I will show that GL < K < GR for all options GL, GR of G, and for all options KL, KR

of K, there exist options of G with KL ≤ GL, KR ≥ GR, which implies G = K. For the
former, the terms in the normal forms of the options of G coincide with those of K until K
has a term that is greater (less) for left (right) options.

For the latter, first consider the right options. They are of the form KR = (
∑

β<α rβω
yβ)+

(rαω
yα)R = A+ (rαω

yα)R. If there is some GR coinciding with K for the first α terms, then
KR > GR because the αth term is greater and all previous terms are the same.

Now consider the case where no such option exists. This eliminates moving in one of the
coincident terms. The right option may be moving in the exceptional term or one of the
terms from step 3.

Suppose the option is moving in the exceptional term. Let A be the sum of corresponding

terms. Then it may be of the form A + (ω

{
a,aL

∣∣b,bR}
)R which equals A + rωb, allowing

GR = A+ r
2
ωb+ [smaller terms], or A+ rωbR allowing GR = A+ωb+ [smaller terms]. It may

also be of the form A + ({aL, b|c, dR}ωyα)R+ [smaller terms] which can equal A + dRωyα+

[smaller terms], allowing GR = A+dωyα+ [smaller terms], or A+cωyα+(rα−c)ωyLα+ [smaller
terms], allowing GR = A + cωyα + xωyLα+[smaller terms] for sufficiently small x. Finally, it
may be of the form A + (bωyRα )R = A + bRωyα+ [smaller terms], with b the infimum of the
cs, dRs, allowing GR = A+ cωyα+ [smaller terms].

Suppose some right options coincided with K in initial terms for step 3. Then rαω
yα must

be the final term of K, so we consider the terminating conditions for step 3. KR can be

A+(−ω

{
|k
}
)R = A, allowing GR = K ≤ K. It can be A+(−ω

{
e,eL

∣∣k}
)R which equals A−rωe,

allowing GR = A−(r+1)ωe, or A−rωeL , allowing GR = A−kωe+ [smaller terms]. It can be

A+(
{∣∣ aR, b}ω{

e,eL
∣∣k}

)R = A+(
{∣∣ aR, b}ωyα)R which equals A+aRωyα+(r

{∣∣ aR, b}−aR)ωyLα ,
allowing GR = A+ aωyα+ [smaller terms], or A+ bωyα + (r

{∣∣ aR, b}− b)ωyLα allowing GR =
A + bωyα + kωe+ [smaller terms] for sufficiently small k (the options of yα are e, allowing
arbitrarily small k, or eL). Thus we have finished this case.

Now suppose some left options coincided with K in initial terms for step 3. Then there
exist options GR coinciding with K until the exceptional term of K, which is less than the
coinciding term of GR. Then the options KR are A + xωk + B + (rω

{
x|k

}
)R = A + (x +

r − rL)ωk +B + rLω

{
x|k

}
for positive reals s, where A represents coinciding terms, xωk the

exceptional term, and B further terms. This allows GR = A+ xωk+ [smaller terms].
The proof is the same for left options.
Thus every surreal number can be represented in Conway normal form. To prove that this

representation is unique, if any coefficient or exponent is increased (decreased), the difference
in that term is infinite with respect to all following terms, so the entire sum in increased
(decreased). ■

Conway defined this type of infinite sum differently. His definition is as follows: given a
surreal number x, let r0ω

y0 be the unique real multiple of a power of omega commensurate
with x (not infinitesimal or infinite with respect to it), and say it is the 0 term of x. Then
suppose for some α we have defined the β term of x for all β < α. We declare

∑
β<α ω

yβ · rβ
to be the simplest (least birthday) number with all the same β terms as x. We then write
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x =
∑

β<α ω
yβ · rβ +xα, terminating if xα is zero, and otherwise defining the alpha term of x

to be the unique rαω
α commensurate with xα. It is not hard to show that the sum defined

in this paper is equivalent; a sum of the type considered in this paper is commensurate
to its first term, providing a base case; when α is a successor ordinal,

∑
β<α ω

yβ · rβ =

(
∑

β<α−1 ω
yβ · rβ) + ωyα−1 · rα−1 for both types of sums; and when α is a limit ordinal, the

surreal numbers between the options of
∑

β<α ω
yβ · rβ are exactly those with β term ωyβ · rβ,

so the simplest among them, i.e. the Conway sum, must equal the ordinal sum by the
simplicity theorem.

2. Omnific Integers

Definition 2.1. The omnific integers are the surreal numbers x with x = {x− 1 | x+ 1}.

This formalizes the intuition that any number should be within 1 of an integer.

Theorem 2.2. A surreal number is an omnific integer iff all exponents in its Conway normal
form are nonnegative and the ω0 term is a normal integer.

Proof. Write x− 1 and x+ 1 in Conway normal form. Using the method I proved above for
determining the normal form of the result, all terms in the normal form of x with positive
exponent will be the same for {x− 1 | x+ 1}. The exceptional term is the ω0 term. Let
r be the constant term of x; then the exceptional term will be {r − 1 | r + 1}. There will
be no further terms. Thus x = {x− 1 | x+ 1} iff there are no terms in the normal form
of x with negative exponent, and the constant term r of x satisfies r = {r − 1 | r + 1}. By
the simplicity theorem, this happens exactly when r is an integer; thus we have proven the
theorem. ■

Each irreducible regular integer is also an irreducible omnific integer; any factorization of
an integer cannot have any omega powers, leaving only integer factorizations possible; thus
irreducible integers remain irreducible omnific integers.

Theorem 2.3. For all omnific integers n with a finite number of terms in their Conway
normal form that are not regular integers, if there is a real r such that all exponents in the
Conway normal form of n are r times a rational, n is reducible.

Proof. Let n be
∑

i riω
r
pi
qi . Let m = lcm(qi). Make the substitution t = ω

r
km . Then

n =
∑

i rix
kpim

qi , a polynomial in x with coefficients in R with degree as large as desired. By
the fundamental theorem of algebra, this polynomial has a nonconstant factor, thus giving
infinitely many factorizations as k is increased. ■

For example, ω+1 can be factored as (ω 1
3 +1)(ω

2
3 −ω

1
3 +1), (ω 1

5 +1)(ω
4
5 −ω

3
5 +ω

2
5 −ω

1
5 +1),

etc.

Theorem 2.4. Every surreal number is a quotient of omnific integers.

Proof. For a surreal x, let the exponents in the terms of x be yα. Let k = {| yα}. k is less
than all yα, so x

ωk only has positive terms, and thus is an omnific integer. k ≤ 0, so ω−k is
an omnific integer, so x =

x

ωk

ω−k . ■
The Conway normal form for surreal numbers allows them to be viewed as generalized

power series, or Hahn series: No = R((No)). The omnific integers can then be represented
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as Z
⊕

R((No<0)). We can apply the following theorem from generalized power series, from
[1]:
Theorem 2.5. Let K be a field of characteristic 0, G a divisible ordered abelian archimedean
group. Suppose that a ∈ K((G≤0)) (the ring of series with coefficients in K and negative
exponents in G) is not divisible by any monomial tγ with t < 0. If the order type of the
support (the set of exponents) of G is either ω or of the form ωωβ , then both a and a+1 are
irreducible.

The exponents are nonnegative, unlike what we are used to, because of a change of variables
t = ω−1. This leads to elements of the ring having well-ordered support.

This result does not immediately apply to the omnific integers, since the surreals are not
archimedean. However, we can use it to prove the following.

Theorem 2.6. ω + ω
1
2 + ω

1
3 + ...+ 1 is irreducible over the omnific integers. In general, if

an omnific integer a has real exponents and is not divisible by any monomial ωr with real r,
and its sum has limit ωωβ , then a+ 1 is irreducible.
Proof. We can expand the ring we are considering by adding elements with arbitrary real
constant terms. Any factorization in the omnific integers immediately implies factorization
in this larger ring, and any factors in the larger ring can be divided by reals to get omnific
integers.

Since terms of omnific integers cannot have negative exponents, if there are any infinite
exponents in x or y, there are infinite exponents in xy. Thus we only need to consider
omnific integers with exponents less than ω, i.e. factorization in the ring R((No−ω<x≤0)).
Elements of No−ω<x≤0 can be written uniquely as a real part and infinitesimal part, and
these representations have pairwise addition, thus (under addition) No−ω<x≤0 is isomorphic
to R⊕K, where K is the ring of infinitesimal surreal numbers. An exponent rωs+k with reals
r, s, infinitesimal k can be written as rωkωs, and like terms can be combined based on the
ωs term, so No−ω<x≤0 ∼= R<0 ⊕K ∪K≤0, R((No−ω<x≤0)) ∼= R((R<0 ⊕K ∪K≤0)). Now let
us consider the larger ring where positive elements of K are thrown in, i.e. R((R≤0))((K)).
In this ring, our series is not divisible by a monomial, its order type is still the same, and R
satisfies the criteria for G, thus by Theorem 2.5 a + 1 is irreducible in this ring. This does
not show irreducibility in the original ring, because the units are different: it is possible a+1
could factor as bc, b ∈ R((K)), b /∈ R, b, c ∈ R((R<0 ⊕K ∪K≤0)), thus b ∈ R((K≤0)). Note
R((K)) is a field. Suppose for contradiction that it does. Then (a+ 1)b−1 = ab−1 + b−1 = c.
Since b /∈ R, b has some negative exponent, thus b−1 must have some positive exponent. All
exponents in ab−1 are less (more absolute value) than any infinitesimal, thus any exponents
in b−1 are present in c, so c has a positive exponent, which is a contradiction. Thus a+ 1 is
irreducible in the smaller ring and so in the omnific integers. ■
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