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Abstract

In this paper, we briefly introduce the idea of computational complex-
ity and its applications in Combinatorial Game Theory. We will examine
several games, and their respective complexities such as the Redwood
Furniture Problem derived from the game of Hackenbush. This provides
an exposition on the idea of complexity when it comes to Combinatorial
Games.

1 Introduction and Definitions

Computational complexity is a theoretical subfield of computer science which
aims at classifying problems into how hard they are to solve given a certain
amount of combinatorial objects. In the context of CGT, one such problem
would be how ”hard” it is to determine the winning strategy of a game.

Now, we introduce the concept of complexity classes. There are quite a few
complexity classes, but the notable classes are P, NP, and PSPACE. It is well
known that P ⊆ NP ⊆ PSPACE, meaning that problems that are in P are also in
NP by the definition of a subset. We now define the classes mentioned previously.

Definition 1. The complexity class P contains problems which can be solved
in polynomial time by a Deterministic Turing Machine.

Definition 2. The complexity class NP contains problems which can be solved
in polynomial time by a Non-Deterministic Turing Machine. More formally,
this can be written as NP =

⋃
k∈N NTIME(nk)

Definition 3. The complexity class PSPACE contains the problems which can
be solved by Turing Machines in Polynomial space. Similar to the NP class,
this can be written as PSPACE =

⋃
k∈N SPACE(nk).

Definition 4. If a given problem is class-X hard, it is at least as hard as the
problems in class-X.
If the aforementioned problem is both class-X hard, and is located in class-X, it
is class-X complete.
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This definition is important as it gives us an important idea - a lower bound
for a problem’s complexity. Additionally, note that if a problem is class-X
complete, it must be class-X hard.

2 Computational Complexity of Go

So far, we have given a simple overview of complexity in a general sense. Now,
we expound upon the subject with respect to combinatorial games.

The first game we analyze is Go. Before we examine the game, it is imper-
ative to understand a standard way to prove that a certain game belongs to a
certain complexity class. This method is known as reduction. The general idea
is starting with a conjectured complexity class that a game could belong to.
We then start with a problem known to belong to that complexity class. From
there, we reduce said problem consecutively until we are able to reduce it to the
game we want to prove.

A simple exposition of proving Go’s complexity will now be given.

Theorem 1. Go is PSPACE hard

Proof. We start with the Quantified Boolean Formula Problem. Quantified
Boolean Formula (QBF) = {Q1v1Q2v2...QnvnF (v1, v2, ..., vn)} where Q1 = ∃
and Qn = ∀ and Qi 6= Qi+1. F is a boolean function using the variables.

Lemma 1. QBF is PSPACE− complete

We use this lemma without proof in this paper. Readers may refer to A.R.
Meyer, L.J. Stockmeyer, Word Problems Requiring Exponential Time for a de-
tailed proof.

Generalized Geography .

We assume prior knowledge of this game. We will use this game as our starting
point of reduction after being given a QBF formula.

Theorem 2. GG is PSPACE− complete

A sketch of the proof is as follows

Proof. Given a QBF formula X, we can construct a graph corresponding
to the Generalized Geography game of X, which we will refer to as GG(X). The
graph is constructed as follows. Each variable gets its own diamond structure,
and each clause in the F function is represented by a node with each node point-
ing to all variables within that clause.
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The first part of the game is passing through all the diamond structures un-
til the game arrives at the last named node
There are two players: if-any and the for-all player. One player will choose the
variables corresponding to the ∀ and another player will choose the variables
corresponding to the ∃.
Without loss of generality, suppose that the for-all player is the player that
is responsible for determining which node to visit after the last variable node.
Note once again that these nodes represent clauses rather than variables now.
By the definition of ∃, if even one node is open, then the if-any player wins.
Thus, the winning strategy for for-all player is to make sure that the node they
visit has a dead end.

This should seem familiar. Indeed, the if-any player’s strategy can be infor-
mally noted as discovering the variables that will satisfy the QBF.

Thus we have shown that GG is also PSPACE-complete. QED. We have
therefore completed the reduction from QBF to GG.

Planar GG .

Lemma 2. Planar GG is PSPACE− complete

Proof. There exists a substitution which can transform every GG game into
a Planar GG game. The substitution is as follows: We do not dive deeper into

Figure 1: The substitution needed to transform a GG to PGG

the proof and construction of this equivalent PGG game, but readers may refer
to D. Lichtenstein, M. Sipser, GO is Pspace Hard for a more detailed proof.
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Go .

The idea behind this final reduction is to show that the game Go can be used
to solve any PGG problem, thus putting PGG as a lower bound on complexity
for Go. Trivially, this will mean that Go is at least as hard as PGG which will
provide us the result wanted.

3 Hackenbush

This section assumes a basic knowledge of the game Hackenbush. The problem
we examine is the computational complexity of the Red-Blue Hackenbush.

Theorem 3. Hackenbush is an NP-hard problem

Proof. We first examine a specific problem in Red-Blue Hackenbush known
as the Redwood Furniture Problem.

Lemma 3. The Redwood Furniture Problem is NP-hard.

Proof. We start with the fact that a piece of redwood furniture has a value
of 1

2n . We also utilize the Don’t-Break-It-Up theorem, which says that if there
is a move for Right which leaves a piece of redwood furniture connected, then
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one of those moves which does so is worthwhile for Right.

For a redwood furniture with value 1
2n this means that Right has a move to

{0| 1
2n−1 }. Now consider a redwood bed, which is a redwood furniture such that

all the mattress edges each have one end at the top of a leg.

If you make a succession of worthwhile moves, you can prove that this red-
wood bed, that is a tree has value 1

2

If you make these worthwhile moves for as long as you can without discon-
necting it, we have that a Bed = 1

2m ·
1
2 = 1

2m+1 . In other words, to figure out
the size of a redwood bed, you have to know the smallest redwood tree in the
bed which contains all its legs.

Thus, it follows that this problem is NP-Hard as it has been reduced.
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