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1 Introduction

In this paper, I shall go over the proof of a wining strategy for the any
Angel with power 2 or more in the Angel problem. The Angel problem is
a question proposed by John Conway. The game is played by two players,
usually referred to as the angel and the devil, on an infinite board. The
angel has a power k specified at game start. The board starts empty with
an angel on one of the squares. On each turn, the angel can move to an
adjacent square(including diagonals) at most k times. The devil, on its turn,
can destroy a square on the board so that the angel is no longer eligible to
move there. The Devil wins if the Angel can no longer move, and the Angel
wins by surviving indefinitely.

It was proven that, when k is 2, the Angel has a wining strategy. Just
like when solving a maze puzzle, you can solve it by keeping your left hand
on the wall the entire time, the Angel problem is somewhat similar. She
divides the board into evaded squares, free squares, and blocked squares. At
the beginning, she declares the Left half to be evaded, and right half to be
free, and start moving up along the boundary of the free squares and the
evaded squares. The boundary forms the path of the Angle, and is adjusted
based on the Devil’s move. The idea is that the Angel keeps trying to go up,
but if the Devil puts an obstruction in the way, the Angel will (carefully) go
around it. The tricky part of the proof is to show that the Devil can’t force
the Angle to go in a circle, because if so, she will be trapped.
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2 Border Curves

A key concept in the strategy is border curves. We define a segment to be the
border between two adjacent squares on the board. We consider continuous
curve built from an infinite sequence of segments. The curves are directed
from their past to their future. When considering a segment as part of a
curve, it is also directed; otherwise, it is not.

A border curve partition the board into a left set and a right set. All the
squares in the left set has to be connected, while some components in the
right set can be enclosed in the left set.

Thus, we formally define a border curve below:

Definition 1: Let s be a segment in a border curve. The left square of
s is the square on the left hand side of s and the right square of s is the
square on the right hand side of s when looking into the future direction.

Definition 2: Let κ be a continuous and directed curve consists of infi-
nite sequences. κ is said to be a border curve if there exist a set of squares
Vκ such that all the following conditions are satisfied:

1) No segment exist more than twice in κ.

2) If a segment appears exactly once in κ, its left square is in Vκ and its
right square is not.

3) If a segment appears exactly twice in κ, then they are in opposite
directions, and both adjacent squares are in Vκ..

4) If a segment does not occur in κ, then either both of its adjacent squares
are in Vκ or both are not in Vκ.

5) Both Vκ and its complement are infinite.

6) Vκ is connected. In particular, two squares are said to be neighbours if
and only if they are adjacent to a segment that does not occur in κ.

We define Vκ to be the left set, ts complement to be the right set and κ traces
the infinite border between them. Figure 1 shows an example of a border
curve.
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Figure 1: An example of a border curve. The arrows are directed towards
the future, all the squares in Vκ are shaded. Segments that occur twice in κ
are marked bold.

Lemma 1: The left side and right side of a border curve κ are unique.

We define two transformations on a border curve κ into another border curve:

• Extension: We can replace a segment s on κ with right square q 6∈ Vκ,
replacing it with the other three segments that border q such that q is
the left square of all of them.

• Contraction: If two consecutive segments in κ traverse the same seg-
ment on the board, we can delete both of them.

Lemma 2: Let κ be a border curve, µ be an extension of κ involving square
q, ν a contraction of κ. We have Vµ = Vκ ∪ {q} and Vκ = Vν

Definition 3: Let κ and ν be border curves. If ν can be obtained through
a finite sequence of transformations from κ then ν is a descendant of κ.

Lemma 3: If ν is a descendant of κ, Vκ ⊆ Vν

Lemma 4: Let κ be a border curve and s be a segment that occurs twice
in κ. Let ν be the curve obtained by erasing all the segments between the two
occurrences of s inclusively in κ. Then ν is a descendant of κ and therefore
also a border curve.
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Figure 2: Left: examples of extension. Right: examples of contraction.

3 The Angel’s Strategy

In the Angel’s strategy, the angel maintains a path that represents his past
movements and plans for the future. The path is always a border curve. A
perch is a segment on the path and the Angel is in the right square of the
perch. On his turn, the Angel would move the perch two segments along
the path towards the future and would then move into its right square. It is
obvious that such a move would never exceed the Angel’s power.

At the start of the game the path is a infinite straight line that goes from
South to North that contains the perch whose right square is the Angel’s
starting square. Each turn, the Angel will survey the board in the future
part of the path to see if there is an sufficiently amount of blocked squares
sufficiently close to the path. He will then update the path, which is a descen-
dant from the current one, that evade those squares, therefore guaranteeing
that the Angels can move along the path forever. This process will be for-
malized in the section.

Definition 4: At any time, the board is partitioned into evaded, blocked
and free squares. The evaded set is the left set of the current path, the
blocked set is all the squares on the right set of the path that is eaten by the
Devil, and the free set is the set of the remaining squares.

Initially, the entire Western half of the board is evaded and the entire Eastern
part is free. Every time the path is updated, some free and blocked squares
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may become evaded. By eating a free square, the Devil can convert it into a
blocked square.

Definition 5: We define λi to be the path on the i’th turn after updat-
ing; λ0 is the initial path.

Let κ be a descendant of λ0. Since κ can be obtained from λ0 through
a finite number of transformations, they must be the same sufficiently far
in the past and in the future. Thus, we can define Lκ, the length of κ, to
be the number of segments in κ subtract the number of segments in λ0 after
removing infinite parts sufficiently far in the future and in the past from both
curves.

Let j be a turn and κ be a border curve. We define nκ(j) to be the
number of squares in Vκ that the Devil converted from free to blocked before
turn j. It is important to understand that any such square is not free on
turn j but was free at the time when the Devil converted it.

Lastly, we define pi to be the perch after the Angel’s move in turn i; p0
is the initial perch.

As a shorthand, we will write ni(j) for nλi(j) and Li for Lλi

Informally, the rule which the Angel updates his path can be stated as
such: The future of the path is to be as short as possible, but the Angel
can add segments to it if for every 2 segments added, an additional blocked
square is evaded. Under these constraints, the Angel seek to evade as many
blocked squares as possible.

As the Angel start turn i, λi−1 is the current path and pi−1 is the current
perch. We may now proceed to define the update rule formally. Let P 1

i be
the set of border curves µ that satisfy condition 1 and 2:

1. µ is a descendant of λi−1

2. µ is equal to λi−1 in the past up until and including turn pi−1

Then, let P 2
i be the set of µ ∈ P 1

i that satisfy condition 3:

3. For every κ ∈ P 1
i , we have Lµ − 2nµ(i) ≤ Lκ − 2nκ(i)

Finally, let P 3
i be the set of µ ∈ P 2

i that satisfy condition 4:
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4. For any κ ∈ P 2
i , nµ(i) ≥ nκ(i)

In other words, rule one and two states that the updated path is a descen-
dant from the current path that only differ in the future, rule three states
that for every two extra segment on the update path with respect to λ0 one
blocked square has to be evaded(since the minimum value of Lµ − 2nµ(i) is
0), and rule four states that the updated path should evade as much blocked
squares as possible.

Lemma 5: If i and j are turns and j > i, then Lj − 2nj(j) ≤ Li − 2ni(i).

Proof. Notice that λi−1 ∈ P 1
i and λi ∈ P 2

i . Through rule number three, we
have

Li − 2ni(i) ≤ Li−1 − 2ni−1(i)

Since the Devil can not convert any more free squares into blocked squares
in Vi−1 after turn i− 1, we have

ni−1(i) = ni−1(i− 1)

Therefore,
Li − 2ni(i) ≤ Li−1 − 2ni−1(i− 1)

and a little induction completes the proof.

4 Proof that the Angel wins

Consider a future path segment s and its right square q. q can not be blocked
since the update rule would have preferred to evade it. The other case is that
it could be evaded, which means that there is a loop. The loop can be entirely
in the future or it can include the perch, thus enclosing the angel. However
the former case is not possible since the update rule will filter out all such
curves and in the latter case the Angel would have detected the threat earlier
and the path would have been updated to avoid the region entirely. Even if
a loop is formed, it would be small enough that the Angel can jump out of
it in the same turn. We now proceed to prove this formally:

Lemma 6: Let s be a segment of λj in the future of pj, and q be the right
square of s. Then at the end of turn j, q is not blocked.
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Proof. We assume that q is blocked. Suppose µ is an extension of λj where
s is replaced by the other three borders of q. Then Lµ = Lj + 2 and nµ(j) =
nj(j) + 1, therefore Lµ− 2nµ(j) = Lj − 2nj(j) and nj(j) < nµ(j). Since λj ∈
P 2
j , we have µ ∈ P 2

j . But since λj ∈ P 3
j , rule 4 implies that nj(j) ≥ nµ(j),

thus we have a contradiction.

Lemma 7: Let s be a segment of λj in the future of pj−1, and let q be
its right square. Assume that q is avoided at the end of turn j, then s is the
very next segment of λj after pj−1

Proof. Definition 2 implies that s has to appear in λj twice. Let s1 denote
the first occurrence and s2 denote the second occurrence. Define κ to be
the curve obtained by deleting the part of λj from s1 to s2 inclusively. By
Lemma 4, κ is a descendant of λj and its length is

Lκ = Lj − l (1)

where l is the number of segments from s1 to s2, inclusively. By Lemma 3,
Vλj ⊆ Vκ, therefore

nj(j) ≤ nκ(j). (2)

If s1 is in the future of pj−1 then we have κ ∈ P 1
j . By rule number three, we

need to have Lj − 2nj(j) ≤ Lκ − 2nκ(j) but that is impossible. So s1 is in
the past or coincide with pj−1. Let i be the turn when the Angel moved the
perch beyond or to s1. pi is at or after s1 while pj−1 is before s2. From pi to
pj−1 the Angel moves the perch at most l−2 segments, moving it 2 segments
per turn. Therefore we have l − 2 ≥ 2(j − i− 1), or simply

2((j − i) ≤ l (3)

with equality only when pi coincides with s1 and s2 is immediately after pj−1.
From Lemma 5 we have

Lj − 2nj(j) ≤ Li − 2ni(i) (4)

and since the Devil can only eat j − i squares between turn i and turn j, it
follows that

nκ(j)− nκ(i) ≤ j − i (5)

Taking the sum of Eqs.(1) + 2 · (2) + (3) + (4) + 2 · (5) we get

Lκ − 2nκ(i) ≤ Li − 2ni(i) (6)
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In turn i, rule number three implies

Lκ − 2nκ(i) ≥ Li − 2ni(i)

The only way both can be true is when equality holds, that means that
equality must hold in (3).

The proof is almost complete, we just need to show that s1 is not too far
in the past to the point where no such i exists. To show this, we just have
to show that we can assume j to be arbitrarily late in the game. Suppose
that for the first m turns we force the Devil to pass by only eating evaded
squares. The Angel would trod along the path, until m turn passes. Due
to the symmetry of the initial path, this game is equivalent to the original
game regardless of the value of m. Thus, j can be any turn, no matter how
late it is.

Theorem 8: The presented strategy permits the Angel to play indefi-
nitely without ever landing on an eaten square.

Proof. Let j be any turn and q be the right turn of pj. At the end of turn j,
q cannot be blocked by Lemma 6 and cannot be evaded by Lemma 7, thus
it must be free.
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