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Abstract

A Carmichael number is a number n such that for all a relatively prime to n, an−1 ≡ 1 (mod n). In
this paper, we show several properties of Carmichael numbers. First, we show several basic properties
of Carmichael numbers. Second, we prove Korselt’s Criterion, which gives a necessary and sufficient
condition a number to be a Carmichael number. Third, we present a few corollaries of this condition.
Finally, we prove that there are infinitely many Carmichael numbers. Finally, we state a few recent results
about Carmichael numbers.

1 Introduction

Fermat’s Little Theorem says that for a prime p, an−1 ≡ 1 (mod p), for all gcd(a, n) ̸= 1. It’s natural to then
ask the question, is the converse true? That is, if am−1 ≡ 1 (mod m) for all a relatively prime to m, then is
m prime? It turns out this is false, and the counterexamples to these are called Carmichael numbers.

For example 561 is a counterexample to this, since 561 = 3 · 11 · 17. For any a relatively prime to 561,
a2 ≡ 1 (mod 3), a10 ≡ 1 (mod 11), and a16 ≡ 1 (mod 17), so by the Chinese Remainder Theorem, a560 ≡ 1
(mod 561).

2 Basic Properties

In this section we prove several properties of Carmichael numbers.

Theorem 2.1. Every Carmichael number is odd.

Since n−1 is relatively prime to n, we have (n−1)n−1 ≡ 1 mod n. so (−1)n−1 ≡ 1 mod n and (−1)n−1 = ±1.
Since n > 2 we have (−1) ̸≡ 1, so (−1)n−1 ≡ 1 (mod n). Thus n− 1 is even, so n is odd.

Theorem 2.2. Let n be a Carmichael number. Every prime factor of n is less than √
p.

If p is a prime factor of n, then

n− 1

p− 1
=

p(n/p)− 1

p− 1
=

(p− 1)(n/p) + n/p− 1

p− 1
=

n

p
+

n/p− 1

p− 1

so (p− 1)|(n/p− 1). Thus p ≤ n/p, and the inequality must be strict. Otherwise, n = p2, which is impossible.

So p2 < n and p <
√
n.

This also shows that every Carmichael number must have at least 3 factors as a corollary: if n = pq, then
p <

√
n and q <

√
n, so pq < n, which is a contradiction.
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3 Korselt’s Criterion

Theorem 3.1 (Korselt’s Criterion, 1899). A number n is a Carmichael number if and only if n is square-free,
and for all prime divisors p of n it is true that p− 1|n− 1.

Carmichael found several such Carmichael numbers with 3 distinct prime factors, and one with four distinct
prime factors.

For example, the first few Carmichael numbers are 561, 1105, 1729, 2465, and 2821. We can check that for
561 = 3 · 11 · 17, 2 | 560, 10 | 560, and 16 | 560, for 1105 = 5 · 13 · 17, 4 | 1104, 12 | 1104, 16 | 1104, and for
1729 = 7 · 13 · 19, 6 | 1728, 12 | 1728, and 18 | 1728.
We now prove Theorem 3.1. Assume n is a Carmichael number. First we will show n is square free. If a
prime p divides n more than once, write n = pkn′ where k ≥ 1 and (p, n′) = 1. We want to show k = 1, and
will do this by contradiction using the Chinese Remainder Theorem.

Assume k ≥ 2, so n is divisible by p2. By the Chinese Remainder theorem there is an a ∈ Z such that
a ≡ 1 + p mod pk and a ≡ 1 mod n′. Then (a, n) = 1, so

an−1 ≡ 1 mod n.

by the definition of Carmichael numbers. Reduce the above congruence modulo p2, getting (1 + p)n−1 ≡ p2.
By the binomial theorem, (1 + p)n−1 ≡ 1 + (n− 1)p mod p2. Since N is divisible by p, 1 + (n− 1)p ≡ 1− p
mod p2. Thus 1− p ≡ 1 mod p2. This is a contradiction so k = 1.

This gives another proof that all Carmichael numbers are odd.

Suppose n is an even Carmichael number. Then in order for n to be square-free and composite, n must have
an odd factor p. Then p− 1|n− 1 by Korselt’s Criterion, but an even number cannot divide an odd number.
Contradiction.

A number is said to be cyclic if ϕ(n) and n are relatively prime. It follows from Korselt’s Criterion that n
and ϕ(n) are relatively prime, as by Korselt’s Criterion, it is true that for any Carmichael number n,

ϕ(n) =
∏
p|n

(p− 1)

But if p− 1|n− 1 for all p | n, then n and p− 1, and hence ϕ(n), are relatively prime.

Corollary 1. A Carmichael number cannot have exactly two prime divisors

Proof: Suppose n is a product of two primes, so n = pq, where p and q are prime. Then by Korselt’s criterion,
p− 1 | pq − 1. By clearly p− 1 | (p− 1)q = pq − q, so p− 1|q − 1 by the Euclidean Algorithm. But we can
argue similarly that q − 1|p− 1. Contradiction.

4 Chernick’s Theorem

Jack Chernick proved a theorem which can be used to construct a subset of the Carmichael numbers.

Theorem 4.1 (Chernick, 1939). The number (6k + 1)(12k + 1)(18k + 1) is a Carmichael number if all its
three factors are prime.

Erdős argued heuristically that there should be infinitely many Carmichael numbers.
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5 A Lower Bound on Carmichael Numbers

Theorem 5.1 (Alford, Granville, Pomerance). For sufficiently large n there are at least n2/7 Carmichael
numbers between 1 and n.

For brevity’s sake, we will not include every proof in the paper by Alford, Granville and Pomerance on the
infinitude of Carmichael Numbers.

The proof of Theorem 5.1 relies on 5 main theorems, namely, Theorems 5.2 to 5.6.

Let π(x) denote the number of primes p ≤ x, and let π(x, y) be the number of these for which p− 1 is free of
prime factors exceeding y. Let E denote the set of numbers E in the range 0 < E < 1 for which there exist
numbers x1(E), γ1(E) > 0 such that

π(x, x1−E) ≥ γ1(E)π(x)

for all x ≥ x1(E).

Erdős proved that there is a small positive number in E . The best known result is that any positive number
less than 1− (2

√
e)−1 is in E . One can show using the Brun-Titmarsh theorem that if E ∈ E , then E′ ∈ E for

some E′ > E. That is E is an open interval.

Theorem 2 (Brun-Titmarsh theorem). Let π(x; q, a) count the number of primes p congruent to a modulo q
with p ≤ x. Then

π(x; q, a) ≤ 2x

ϕ(q) log(x/q)
(1)

for all q ≤ x.

Let π(x; d, a) be the number of primes up to x that are a mod d. The prime number theorem for arithmetic
progressions states that π(x; d, a) ∼ π(x)/φ(x) as x → ∞, where φ is the Euler’s function.

It is conjectured that equation (1) above holds for 1 ≤ d ≤ x1/2 − ϵ assuming the Riemann Hypothesis.

If one is willing to relax the asymptotic relation in (1), one can take 1 ≤ d ≤ xB for some small B > 0.

Let B denote the set of numbers in the range (0 < B < 1) for which there is a number X2(B) and a positive
integer DB , such that for each x ≥ x2(B), there is a set DB(x) of at most DB integers, each exceeding log x,
with

π(y; d, a) ≥ π(y)

2φ(d)

whenever (a, d) = 1, 1 ≤ d ≤ min{xB , y/x1−B} and d not divisible by any member of DB(x).

It can be shown that the interval (0, 5/12) ⊂ B.

Theorem 5.2. For each E ∈ E and B ∈ B there is a number x0 = x0(E,B) such that C(x) ≥ xEB for all
x ≥ x0.

Since (0, 1− (2
√
ϵ)−1) ⊂ E and (0, 5/12) ⊂ B, we conclude that C(x) ≥ xβ−ϵ for any ϵ > 0 and all large x

depending on the choice of ϵ, where

β = (1− 2(
√
ϵ
−1

)
5

12
= .290306 . . . .

This implies Theorem 5.1.
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Alford et al.’s arugment is based on Erdős’s heuristic that there are infinitely many Carmichael numbers.

The idea is to construct an integer L for which there are a very large number of prime p such that p − 1
divides L. Suppose that the product of some of these primes, say C = p1 . . . pk is congruent to 1 mod L. If
C is a Carmichael number, since each pj − 1 divides L which divides C − 1, we may apply Korselt’s criterion.
The more such products we can find, the more Carmichael numbers we will have constructed.

Theorem 5.3. If G is a finite abelian group in which the maximal order of an element is m, then in
any sequence of at least m(1 + log(|G|/m)) (not necessarily distinct) elements of g, there is a non-empty
subsequence whose product is the identity.

In order to apply Theorem 1.2 to finding Carmichael numbers, we will need to find an integer L with at least

λ(L)

(
1 + log

φ(L)

λ(L)

)
≥ λ(L)

primes p for which p− 1 divides L. Here, Carmichael’s lambda function λL is the largest order of an element
in (Z/LZ)∗. However, the number of such primes p cannot exceed d(L), the number of divisors of L, since
each p is a 1 plus a divisor of l, and usually λ(L) is much larger than d(L). To avoid this problem, we pick
our L so that λ(L) is surprisingly small, while, at the same time, there are many primes p for which p− 1
divides L. To do this, we select L to be the product of certain primes q for which the prime factors of q − 1
are all at most y. This is how E ∈ E enters into the proof.

Theorem 5.4. For each B ∈ B, (0, B) ⊂ E .

Theorem 5.5. Let ϵ > 0. Suppose there is a number xϵ such that

π(x; d, 1) ≥ π(x)

2φ(d)

for all positive integers d ≤ x1−ϵ, once x ≥ xϵ. Then there is a number x′
ϵ such that C(x) ≥ x1−2ϵ for all

x ≥ x′
ϵ.

Since every positive number B < 5/12 is in B, and by theorem 5.4, we have that values for γ1(E) and x1(E)
are effectively computable for every positive number E < 5/12. We thus have

Theorem 5.6. For each number α in the range 0 < α < 25/144, there is an effectively computable number
x(α) such that C(x) ≥ xα for all x ≥ x(α).

6 Bounds on Carmichael Numbers

Let C(x) denote the number of Carmichael numbers less than or equal to X.

Knodel proved that

C(X) < X exp(−k1(logX log logX)1/2)

for some constant k1.

Erdős improved the bound to

C(X) < X exp

(
−k2 logX log log logX

log logX

)
Alford, Granville, and Pomerance proved in 1994 that for sufficiently large X,
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C(X) > X2/7.

In 2005, this bound was improved by Harman to

C(X) > X0.332.

and this was later improved by the same to 0.7039 · 0.4736 = 0.33336704 > 1/3.

Using techniques developed by Yitang Zhang and James Maynard to establish results about small gaps
between primes, Daniel Larsen proved an analogue of Bertrand’s Postulate for Carmichael numbers. He
showed that

Theorem 6.1 (Larsen). For δ > 0 and sufficiently large x in terms of δ, there will always be at least

exp

(
log x

(log log x)2+δ

)
Carmichael numbers between x and

x+
x

(log x)
1

2+δ

.

5



Xinke Guo-Xue 7 References

7 References

Alford, Pomerance, Granville: There are infinitely many Carmichael Numbers. https://math.dartmouth.
edu/~carlp/PDF/paper95.pdf

Erdos, Paul. On pseudoprimes and Erdos numbers. https://www.renyi.hu/~p_erdos/1956-10.pdf

Jack Chernick:

https://www.ams.org/journals/bull/1939-45-04/S0002-9904-1939-06953-X/S0002-9904-1939-06953-X.
pdf

Larsen, Daniel. There are infinitely many Carmichael numbers. https://arxiv.org/pdf/2111.06963

Korselt’s Criterion: https://kconrad.math.uconn.edu/blurbs/ugradnumthy/carmichaelkorselt.pdf

6

https://math.dartmouth.edu/~carlp/PDF/paper95.pdf
https://math.dartmouth.edu/~carlp/PDF/paper95.pdf
https://www.renyi.hu/~p_erdos/1956-10.pdf
https://www.ams.org/journals/bull/1939-45-04/S0002-9904-1939-06953-X/S0002-9904-1939-06953-X.pdf
https://www.ams.org/journals/bull/1939-45-04/S0002-9904-1939-06953-X/S0002-9904-1939-06953-X.pdf
https://arxiv.org/pdf/2111.06963
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/carmichaelkorselt.pdf

	Introduction
	Basic Properties
	Korselt's Criterion
	Chernick's Theorem
	A Lower Bound on Carmichael Numbers
	Bounds on Carmichael Numbers
	References

