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Abstract. In 1927, Emil Artin [Art66, pp. viii-x] conjectured that if an integer a is
neither a perfect square nor −1, then it is a primitive root mod p for infinitely many primes
p. Further, if Pa(x) denotes the number of such primes up to x, he conjectured that

Pa(x) ∼ δ(a)
x

log(x)
,

where δ(a) is a specific positive function of a. This conjecture, now known as Artin’s
Primitive Root Conjecture, is still open to date. In this article, we shall look at several
results related to this conjecture, including a positive answer assuming the Generalized
Riemann Hypothesis(GRH). This article has been heavily inspired by [Mur88] and [Mor12].

1. Introduction

The notion of a primitive root was first introduced by Gauss in the context of periodicity in
decimal expansions. Specifically, Gauss was considering the period of the decimal expansion
of 1

p
for prime p ̸= 2, 5. He showed that the period is the least positive k such that 10k = 1

mod p. So if we have a prime p, for which the decimal expansion of 1
p
has period p− 1, the

maximum possible, then p− 1 must the least positive k for which 10k = 1 mod p holds. In
such a case, we say that 10 is a primitive root mod p. For example, 10 is a primitive root
mod 23, and so the period of the decimal expansion of 1

23
is 22. Indeed,

1

23
= 0.043478260869565217391.

More generally, given a prime p, an integer a is said to be a primitive root mod p if p− 1 is
the least positive integer k such that ak = 1 mod p. In more modern terms, an integer a1

is a primitive root mod p if the order of a in the cyclic2 group (Z/pZ)× is p− 1, or, phrased
differently, if the subgroup generated by a is the whole group. Now, it is not unnatural to
ask if given an integer a, we can always find infinitely primes p, for which a is a primitive
root. Of course, this is trivially false when a = −1 and also when a is a perfect square3, but
other than these trivial cases, this question is very difficult to answer. During a conversation
with Hasse in 1927, motivated by some heuristics, Artin made the following conjectures:
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1Of course, p must not divide a, but if p divides a, then we do not have a primitive root mod p.
2The cyclicity of Z/pZ× implies that given a prime p there is an integer a such that a is a primitive root

mod p. As might be expected, the cyclicity was first proven by Gauss. A plethora of proofs exist for this
fact, see [Con] for a collection of many.

3Since 2 always divides the order of Z/pZ×, p > 2.
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Conjecture 1.1 (Artin’s Primitive Root Conjecture Qualitative Form). Given an integer
a other than −1 or a perfect square, there exist infinitely many primes p for which a is a
primitive root mod p.

Conjecture 1.2 (Artin’s Primitive Root Conjecture Quantitative Form). Given an integer
a other than −1 or a perfect square, if Pa(x) denotes the number of primes less than or equal
to x for which a is a primitive root, then we have that Pa(x) ∼ δ(a) x

log x
, where δ(a) is a

specific positive function of a.

Since x
log(x)

∼ π(x), in the quantitative form of Artin’s conjecture, the number δ(a) is the

density of primes for which a is a primitive root. In other words,

δ(a) = lim
x→∞

|{p prime : a is a primitive root mod p and p ≤ x}|
|{p prime : p ≤ x}|

.

Of course, since δ(a) is postulated to be positive in the quantitative form, the quantita-
tive form of Artin’s conjecture implies the qualitative form. Artin’s original motivation for
these conjectures came from algebraic number theory, and several results have been proven
in support of the conjectures. Hooley’s conditional proof assuming GRH in [Hoo67] being
perhaps the most noteworthy of these. In the next section, we shall look at the connection
to algebraic number theory. Next, we shall give a heuristic for δ(a). Then we shall look
at Hooley’s conditional proof assuming GRH. Finally, in the last section, we shall mention
some other interesting results related to Artin’s Primitive Root Conjecture.

Proportion δ(a) of primes p for which a is a primitive root mod p

a = −1 or b2 δ(a) = 0

a = bk
δ(a) = v(k)δ(b)

Where v is multiplicative, and v(qn) = q(q−2)
q2−q−1

, for prime q.

sf(a) = 1 mod 4
Where sf(a) is the square free part of a.

δ(a) =
(
1−

∏
q

1
1+q−q2

)∏
q

(
1− 1

q(q−1)

)
, q prime

Otherwise δ(a) =
∏

q

(
1− 1

q(q−1)

)
, q prime

Table 1. Conjectural values for δ(a) for a in order of earliest applicable case

2. A Very Näive Heuristic for Artin’s Primitive Root Conjecture

Recall that Artin conjectured

(2.1) Pa(x) ∼ δ(a)
x

log(x)
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Why should we expect this to be true? By the Prime Number Theorem for Arithmetic
Progressions, we have

(2.2) π(x; d, a) :=
∑
p≤x

p≡a mod d

1 ∼ x

ϕ(d) log x
,

where (d, a) = 1. In light of the Prime Number Theorem, this implies that the primes
are roughly uniformly distributed in the ϕ(d) primitive congruence classes mod d. Fix an
integer a, and a prime q. Let us estimate the density of primes p such that p ≡ 1 mod q and

a
p−1
q ≡ 1 mod p. By the Prime Number Theorem for Arithmetic Progressions, we have that

probability that p ≡ 1 mod q is roughly 1
ϕ(q)

= 1
q−1

. Further the probability that a
p−1
q ≡ 1

mod p is roughly 1/q. Assuming independence, we can take the product over all primes to
get δ(a) is equal to the product ∏

q

(
1− 1

q(q − 1)

)
,

where q ranges over the primes. The value
∏

q(1−
1

q(q−1)
) is known as Artin’s constant. We

know it’s non-zero since
∑∞

k=1
1

k(k−1)
converges.

3. The Connection to Algebraic Number Theory

It is the tools of algebraic number theory that will allow us to make progress on Artin’s
Primitive Root Conjecture. Before we continue, let us fix some notation: let a denote an
integer other than −1 or a square, a1 denote the square free part of a, and h denote the
largest integer for which a is a perfect h-th power. The connection with algebraic number
theory is seen from the following theorem, which follows from a principle of Dedekind:

Theorem 3.1. Let p and q be primes, then p = 1 mod q and a
p−1
q = 1 mod p if and only

if p splits completely in the number field Kq = Q(ζq, a
1
q )4.

Proof. We can assume that p does not divide a since then both sides of the equivalence

would be false. Now, the condition p = 1 mod q and a
p−1
q = 1 mod p is equivalent to the

assertion that xp = a mod p has exactly q roots. By the Dedekind-Kummer theorem, the
assertion that xp = a mod p has exactly q roots is equivalent to p factorise in F as the
product of q linear prime ideals and p factorise in G as a product of ϕ(q) linear prime ideals
which is equivalent to p splitting completely in Kq. ■

An easy of corollary of this theorem is

Corollary 3.2. Given a prime p, a is a primitive root mod p if and only if p does not split
completely in any Kq, where q is prime.

Now, the reason the reformulation in 3.2 is useful is because of Chebotarev’s Density
Theorem5, which implies that the density of primes which split in Kk

6 is 1
n(k)

, where n(k)

4Note that it does not matter which q-th root we take since we always end up in the same field.
5For a motivating account of Chebotarev’s Density Theorem, see [SL96].
6Here k need not be prime, and we will require the result for square free k.
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is the degree of Kk/Q. We have the following formula for the degree n(k) when k is square
free, which will allow us to get a heuristic for δ(a):

Theorem 3.3. For square free k, we have

n(k) =
kϕ(k)

(h, k)ε(k)
,

where

ε(k) =

{
2 if 2a1|k and a1 = 1 mod 4

1 otherwise

4. A Heuristic for the Function δ(a)

By 3.2, δ(a) is the density of primes which do not split completely in any Kq, where q
ranges over the primes. Using Chebotarev’s Density Theorem and the fact that a prime p
splits completely in Kk and Kl if and only if it splits completely in Klcm(k,l), we can find a
heuristic for δ(a) using the inclusion-exclusion principle: δ(a) gives us the density of primes
which split in none of the Kq, for prime q. To “compute” this density subtract the density
for each prime:

1− 1

n(2)
− 1

n(3)
− 1

n(3)
− · · ·

Then add the densities for product of two primes:

+
1

n(6)
+

1

n(10)
+

1

n(14)
+ · · ·

And so on. In this way, we get the heuristic

δ(a) =
∞∑
k=1

µ(k)

n(k)
,

where µ is the Möbius function. The following theorem evaluates the sum δ(a) =
∑∞

k=1
µ(k)
n(k)

:

Theorem 4.1. Let A(h) =
∏

q∤h

(
1− 1

q(q−1)

)∏
q|h

(
1− 1

q−1

)
, where q is prime. Then we

have that

∞∑
k=1

µ(k)

n(k)
=

{
A(h) if a1 ̸= 1 mod 4(
1− µ(|a1|)

∏
q|a1,q|h

1
q−2

∏
q|a1,q∤h

1
q2−q−1

)
A(h) if a1 = 1 mod 4

Note that since A(h) is positive the sum is also positive.

5. Hooley’s Conditional Proof

Subject to the truth of the Generalized Riemann Hypothesis Cristopher Hooley [Hoo67]
proved that our heuristic value for δ(a) is indeed correct.

Intuitively, the Generalized Riemann Hypothesis gives us an effective version of Cheba-
torev’s Density Theorem, which allows us to make the inclusion-exclusion argument rigorous.
Except not quite since the error term ends up being two large. Nevertheless, Hooley was
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able to introduce some intermediate quantities that made everything work.
Hooley proved:

Theorem 5.1.

Pa(x) =

(
∞∑
k=1

µ(k)

n(k)

)
x

log x
+O

(
x log log x

log2 x

)
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