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1 Introduction

The Riemann hypothesis has multiple implications, which include theorems that
allow us to understand prime distribution. Some of the examples include Koch’s
result that gave precise bounds to the error of the prime number theorem (1901),
and Schoenfeld’s bound for the error of Chebyshev’s second function (1976). In
this paper we will be focusing on another result on prime distribution in an
interval, (Theorem 1.3) as proven by Dudek [1](2014)

Conjecture 1 (Riemann Hypothesis). If 0 < R(s) < 1 and ζ(s) = 0, then
R(s) = 1

2

Where π(x) is the number of primes ≤ x, and li(x) is the logarithmic integral
function, assuming the Riemann hypothesis, we can get the following bound:

Theorem 1.1 (Koch). Assuming Riemann hypothesis true, ∀ x ≥ 22657 the
error can be bounded by:

|π(x)− li(x)| < 1

8π

√
x log(x)

Theorem 1.2 (Schoenfeld). Assuming Riemann hypothesis true, ∀ x ≥ 273.2,
the following holds:

|ψ(x)− x| < 1

8π

√
x log2(x)

Where ψ(x) is Chebyshev’s second function, the Riemann hypothesis can
allow us to deduce a bound for the error, getting the above result by Schoenfeld

Theorem 1.3 (Dudek). Assuming Riemann hypothesis true, ∀ x ≥ 2, there is
a prime p satisfying the below:

x− 4

π

√
x log(x) < p ≤ x

In order to prove this, we will first prove a few results on the way. Let us
look at the Riemann von-Mangoldt explicit formula, for the function ψ(x) =∑

n≤x Λ(n), where Λ is the von-Mangoldt function.
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ψ(x) = x−
∑
ρ

xρ

ρ
− log 2π − 1

2
log(1− x−2)

Where x > 0 and x /∈ Z and the sum is over all non-trivial zeros ρ = β + iγ.
Let us integrate both sides of the equation on the interval (2, x) to get

∫ x

2

ψ(t) dt =
x2 − 22

2
+
∑
ρ

(
xρ+1

ρ(ρ+ 1)
− 2ρ+1

ρ(ρ+ 1)

)
−x log 2π−1

2

∫ x

2

log(1−t−2) dt

(1)
Defining a new weighted sum to be ψ1(x),

ψ1(x) =
∑
n≤x

(x− n)Λ(n) =

∫ x

2

ψ(t) dt

Combining this with equation 1 we get that

ψ1(x) =
x2

2
+

∑
ρ

xρ+1

ρ(ρ+ 1)
− x log 2π + ϵ(x)

where

|ϵ(x)| < 2 +

∣∣∣∣∑
ρ

2ρ+1

ρ(ρ+ 1)

∣∣∣∣+ 1

2

∣∣∣∣ ∫ x

2

log(1− t−2) dt

∣∣∣∣
We can evaluate the integral to log( 1627 ) and we can get an estimate on the

sum assuming the Riemann Hypothesis, giving us:∣∣∣∣∑
ρ

2ρ+1

ρ(ρ+ 1)

∣∣∣∣ < 23/2
∣∣∣∣∑

ρ

1

|ρ|2

∣∣∣∣
This sum has an explicitly known value, as shown in Davenport’s work [3] ,

giving us the following lemma

Lemma 1.4.

ψ1(x) =
x2

2
+

∑
ρ

xρ+1

ρ(ρ+ 1)
− x log 2π + ϵ(x) (2)

where

|ϵ(x)| < 12

5

Let us consider prime number distribution in smaller intervals by defining
the weighted function over the interval (x− h, x+ h)

ω(n) =

{
1− |n− x|/h : x− h < n < x+ h

0 : otherwise
(3)
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Notice how this can be imagined as a weighted ratio of the distance of n
around an interval over x of length h.

After some simplifications and manipulations, we get the following identity∑
n

Λ(n)ω(n) =
1

h

(
ψ1(x+ h)− 2ψ1(x) + ψ1(x− h)

)
(4)

Putting in the relations from Lemma 1.4 to equation 4, we get the following
lemma

Lemma 1.5. Let x > 0 and h > 0∑
n

Λ(n)ω(n) = h− 1

h
Σ+ ϵ(h) (5)

where

Σ =
∑
ρ

(x+ h)ρ+1 − 2xρ+1 + (x− h)ρ+1

ρ(ρ+ 1)

and

|ϵ(h)| < 48

5h

We will split the sum Σ into two parts, based on the magnitude of the
imaginary part of γ of ρ = β + γi

Σ = Σ1 +Σ2

where Σ1 runs over all zeros where γ < αx/h for some α > 0, and Σ2 runs
over the rest of the zeros.

We can rewrite the Σ1 as an integral in the following way∫ x+h

x−h

(h− |x− u|)uρ−1du

This integral can now be bounded

∣∣∣∣ ∫ x+h

x−h

(h− |x− u|)uρ−1du

∣∣∣∣ < 1√
x− h

∫ x+h

x−h

(h− |x− u|)du = ‘
h2√
x− h

Hence we get that

Σ1 ≤ h2√
x− h

∑
|γ|<αx/h

1

=
2h2√
x− h

N(αx/h)
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where N(αx/h) is the number of zeros ρ for which 0 < β < 1 and 0 <
γ < T . We add a factor of 2, since we’re taking the absolute value of γ.

According to Trudgian’s paper [2], we have the bound:
∀ T > 15,

N(T ) <
T log T

2π
(6)

Hence, putting this in the existing equation for Σ1, we get, for αx/h > 15,

Σ1 <
2h2

2π
√
x− h

(αx/h) log(αx/h) =
αxh

π
√
x− h

log(αx/h) (7)

Similarly, we will try to bound Σ2 the following way, by the using the Rie-
mannn hypothesis

|Σ2| < 4(x+ h)3/2
∑

|γ|>αx/h

1

γ2

= 8(x+ h)3/2
∑

γ>αx/h

1

γ2

Lemma 1 (ii) in Skewes’ work [4] tells that∑
γ≥T

1

γ2
<

1

2π

log T

T

Therefore, we have

Σ2 <
4h(x+ h)3/2

παx
log(αx/h)

Combining both the bounds in Lemma 1.5, we get:

∑
n

Λ(n)ω(n) > h− 1

h
(|Σ1|+ |Σ2|)−

48

5h
(8)

= h−
(

αx

π
√
x− h

+
4(x+ h)3/2

παx

)
log(αx/h)− 48

5h
(9)

Since h is o(x), we get that the factor of the log term is asymptotic to(
α

π
+

4

πα

)√
x

which will be minimum at α = 2, simplifying our inequality to give

∑
n

Λ(n)ω(n) > h− 2

π

(
x√
x− h

+
(x+ h)3/2

x

)
log(2x/h)− 48

5h
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And we have

ψ(x+ h)− ψ(x− h) =
∑

x−h<n≤x+h

Λ(n)

Now, since (1− |n− x|/h) < 1 for all n in this sum, our smart construction of
ω(n) will now allow us to bound it the following way

ψ(x+ h)− ψ(x− h) >
∑
n

Λ(n)ω(n) (10)

> h− 2

π

(
x√
x− h

+
(x+ h)3/2

x

)
log(2x/h)− 48

5h
(11)

Let us consider Chebyshev’s θ-function defined as

θ(x) =
∑
p≤x

log p

According to Schoenfeld (Theorem 14 and eq 5.5) [5], we can get the following
bounds on the functions:

∀ x > 121,
0.98

√
x < ψ(x)− θ(x) < 1.11

√
x+ 3x1/3

Putting this into our existing inequality for ψ(x+ h)− ψ(x− h), we get∑
x−h<p≤x+h

log p = θ(x+ h)− θ(x− h)

> h− 2

π

(
x√
x− h

+
(x+ h)3/2

x

)
log(2x/h)− 11.1

√
x+ h

− 3(x+ h)1/3 + 0.98
√
x− h− 48

5h

If we keep h = d
√
x log x, the leading term in the equation will be asymptotic

to (
d− 2

π

)√
x log x+

4

π

√
x log log x

Now we observe that for d > 2
π , the right hand side of the equation will

be positive, hence the value of the sum
∑

x−h<p≤x+h log p will also be positive,
showing the existance of at least one prime in the interval

(x− d
√
x log x, x+ d

√
x log x]

Thus, we choose the minimum value of d, i.e d = 2
π . We will substitute

x with x + d
√
x log x, and by the argument of monotonicity, we have, for all

x ≥ 65000, there is at least one prime in the interval

(x− 4

π

√
x log x, x]
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∀ x ≥ 65000 + 2
π

√
65000 log(65000) ≈ 66799

We can verify the statement for the rest of the values of x > 2 using com-
putational tools such as Mathematica.

Hence, we have proven Theorem 1.3.
Let us look at how this interval actually looks like in numbers. Here is how

the interval can be visualised at x = 10, 000.

Figure 1: Prime number distribution: Primes until 10, 000 (in red) and the
interval (x− 4

π

√
x log x, x] at x = 10, 000 (in blue). (Graphed in Desmos)

The theorem will prove to be more useful as the numbers increase to larger
amounts.

Conclusion

This is just one theorem of prime distribution that we looked at, there are many
more such theorems that are a consequence of the Riemann Hypothesis, and help
us better understand prime distribution. Understanding prime distribution is
critical and has applications even outside of mathematics, in the world of hashing
and cryptography. Some other consequences of the RH and GRH include the
theorems regarding large and small gaps between primes and Primality tests
that run in polynomial time.
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