
PORTER’S CONSTANT IN EUCLIDEAN ALGORITHM
COMPLEXITY

TRISHA SABADRA

Abstract. The Euclidean algorithm, one of the oldest and most efficient algo-
rithms for finding the greatest common divisor (GCD) of two integers, has numer-
ous applications in modern computational problems, particularly in the realm of
integer factorization. This paper delves into the intricacies of the Euclidean algo-
rithm, exploring its worst-case complexity characterized by consecutive Fibonacci
numbers and its average-case complexity, highlighting the significance of Porter’s
constant.

1. Introduction to the Euclidean Algorithm

The Euclidean algorithm, a method for finding the greatest common divisor
(GCD) of two integers, has stood the test of time as one of the oldest and most
efficient algorithms still in use today. Named after the ancient Greek mathemati-
cian Euclid, who first described it around 300 BC, this algorithm has been foun-
dational in the field of number theory and has numerous applications in modern
computational problems.

In essence, the Euclidean algorithm capitalizes on a simple yet powerful principle:
the GCD of two numbers does not change if the larger number is replaced by its
difference with the smaller number. This principle allows the algorithm to iteratively
reduce the size of the numbers involved, simplifying the problem until it becomes
trivially easy to solve.

Example. Consider the numbers 252 and 105. We know gcd(252, 105) = 21, as
252 = 21× 12 and 105 = 21× 5. According to the Euclidean algorithm,

gcd(252, 105) = gcd(252− 105, 105) = gcd(147, 105) = 21.

The GCD remains 21 because 147 = 21× 7 and 105 = 21× 5.

Theorem 1. Let n and m be two integers with n ≥ m. Then, gcd(n,m) = gcd(n−
m,m).

Proof. Let d = gcd(n,m). By definition, d is the greatest positive integer that
divides both n and m. Thus, d | n and d | m and for all common divisors x|m,n
then x|d. This means there exist integers a and b such that n = ad and m = bd, so
for the difference n−m:

n−m = ad− bd = d(a− b).

Therefore, d | (n − m). Let d1 = gcd(n − m,m). Since d | (n − m) and d | m,
by definition of the GCD, d | d1. Since d1 | (n − m) and d1 | m, it follows that
d1 | (n − m + m) = n. Thus, d1 | n and d1 | m, so by definition of GCD, d1 | d.
Since d1 | d and d | d1, we have d = d1. Therefore,

gcd(n,m) = gcd(n−m,m).
1

2 TRISHA SABADRA

□

By repeatedly applying this process, we obtain smaller and smaller pairs of num-
bers until the two numbers become equal. When that occurs, they represent the
GCD of the original two numbers. While this method is straightforward, it can be
inefficient and take many subtraction steps when one number is much larger than
the other. The remainder method is a more efficient version of the algorithm as it
shortcuts these steps, instead replacing the larger of the two numbers by its remain-
der when divided by the smaller of the two. This algorithm can be formalized in
the following pseudocode:

function gcd(a, b)

while b != 0

temp := b

b := a mod b

a := temp

return a

Figure 1. Number of steps in the Euclidean algorithm for gcd(x,y).
Lighter (red and yellow) points indicate relatively few steps, whereas
darker (violet and blue) points indicate more steps. The largest dark
area follows the line y = xφ, where φ is the golden ratio.

Example. Let’s compute the GCD of 252 and 105 using the above code.

(1) Calculate 252 mod 105:

252 = 2× 105 + 42 (remainder 42)

Replace 252 with 42. Now we have the pair (105, 42).
(2) Calculate 105 mod 42:

105 = 2× 42 + 21 (remainder 21)

Replace 105 with 21. Now we have the pair (42, 21).
(3) Calculate 42 mod 21:

42 = 2× 21 + 0 (remainder 0)

The algorithm terminates here as the remainder is 0. The last non-zero
remainder is 21, so we found gcd(252, 105) = 21 in just three steps.

PORTER’S CONSTANT IN EUCLIDEAN ALGORITHM COMPLEXITY 3

2. Worst Case Complexity

The computational efficiency of Euclid’s algorithm has been thoroughly studied,
primarily focusing on the number of division steps required and the computational
expense of each step. The first known analysis was conducted by A. A. L. Rey-
naud in 1811, who initially showed that the number of division steps is bounded by
the smaller number, v, and later refined this to v/2 + 2. In 1841, P. J. E. Finck
demonstrated that the number of division steps is at most 2 log2 v + 1, indicating
that Euclid’s algorithm runs in polynomial time relative to the number of bits, or
digits in the smaller number. Émile Léger studied the worst-case scenario in 1837,
identifying it as the case when inputs are consecutive Fibonacci numbers [Sha94].

Definition 1. The Fibonacci Sequence is defined by F0 = 0, F1 = 1, and the
recursive function for n > 1 :

Fn = Fn−1 + Fn−2

Theorem 2. For n ≥ 1, let u and v be integers with u > v > 0 such that Euclid’s
algorithm applied to u and v requires exactly n division steps, and such that u is as
small as possible satisfying these conditions. Then u = Fn+2 and v = Fn+1, where
Fn denotes the n-th Fibonacci number.

Proof. The worst case is characterized by the slowest reduction in the size of the
numbers, which occurs when the quotients in each division step are minimal, i.e.,
1. For consecutive Fibonacci numbers, each quotient is 1, leading to the maximum
number of steps before the algorithm terminates.

Consider the Euclidean algorithm applied to u = Fn+2 and v = Fn+1. Each step
reduces the pair to the next pair of consecutive Fibonacci numbers:

(Fn+2, Fn+1) → (Fn+1, Fn) → (Fn, Fn−1) → · · · → (F3, F2) → (F2, F1).

This sequence shows that n division steps are required.
To generalize this, we use a polynomial representation. Let u = Kn(A1, A2, . . . , An)d,

where Kn is a polynomial, A1, A2, . . . , An are positive integers, and An ≥ 2. The
minimum value for u is achieved when:

A1 = 1, . . . , An−1 = 1, An = 2, d = 1.

This configuration corresponds to the Fibonacci sequence. Thus, for n ≥ 1, the
worst-case scenario for Euclid’s algorithm is when u = Fn+2 and v = Fn+1, requiring
exactly n division steps.
Therefore, we have shown that the sequence u = Fn+2 and v = Fn+1 will require

exactly n division steps in Euclid’s algorithm, confirming the theorem [Knu81]. □

Gabriel Lamé further refined the analysis in 1844, showing that the number of
steps required is never more than five times the number of base-10 digits of the
smaller number. Known as Lamé’s theorem, this represents the beginning of com-
putational complexity theory and also the first practical application of the Fibonacci
numbers [Sha94].

Theorem 3 (Lamé’s Theorem). The Euclidean Algorithm never requires more than
5k steps, where k is the number of digits (base 10) of the smaller integer.

Proof. Let u and v be two positive integers. Applying the Euclidean algorithm,
we generate two sequences: (q1, . . . , qn) and (v2, . . . , vn) where qi represents the

4 TRISHA SABADRA

quotients and vi represents the remainders. More formally, v0 = u, v1 = v, and
vn+1 = 0, such that:

vi−1 = qivi + vi+1

for i = 1, 2, . . . , n, where n is the number of steps in the Euclidean algorithm.

First, we will prove v ≥ Fn+1 using induction on n. For the base case, we know
when n = 1: v1 ≥ F2 = 1 and when n = 2: v2 ≥ F3 = 2. Assume that the claim
holds when n = k, so we want to prove the claim when n = k − 1. By induction,

vk−1 = qkvk + vk+1

≥ vk + vk+1

≥ Fk+2 + Fk+1 = Fk+3

by the definition of the Fibonacci sequence.

Next, we want to prove the Fibonacci numbers grow exponentially according to the
golden ratio φ :

φ =
1 +

√
5

2
.

Specifically, we will prove Fk ≥ φk−2 for all integers k ≥ 2 by induction. For the
base case, F2 = 1 = φ0 and F3 = 2 > φ. Now for k + 1 :

Fk+1 = Fk + Fk−1

≥ φk−2 + φk−3

= φk−3(φ+ 1)

= φk−1

using φ2 = φ + 1. Thus, we proved that Fn+1 ≥ φn−1. Now combining this result
with v ≥ Fn+1, we get

v ≥ φn−1

log10(v) ≥ (n− 1) log10(φ)

n− 1 ≤ log10(v)

log10(φ)

Using the approximation:

log10(φ) ≈ 0.20899

1

log10(φ)
≈ 4.79 < 5

Therefore,

n− 1 ≤ log10(v)

log10(φ)
< 5 log10(v)

If k is the number of decimal digits of v, one has v < 10k and log10(v) < k. So,

n− 1 < 5k → n ≤ 5k

which completes the proof. □

PORTER’S CONSTANT IN EUCLIDEAN ALGORITHM COMPLEXITY 5

Thus, Lamé’s analysis implies that the running time is O(h), where h is the num-
ber of digits in the smaller number. While this is a good upper bound, it only
represents the the worst-case scenario: when the input numbers are consecutive Fi-
bonacci numbers. These cases occur rarely, and don’t reflect the typical behavior of
the Euclidean algorithm. Thus, understanding the average-case complexity provides
insights into the typical efficiency of the algorithm in practice.

3. Average-Case Complexity

The average number of steps τ(n) taken by the Euclidean algorithm for a fixed n
and averaged over all integers m that are coprime to n is:

τ(n) =
1

φ(n)

∑
0≤m<n

gcd(m,n)=1

T (n,m),

where T (n,m) is the number of steps to compute gcd(n,m). In 1969, Hans Heilbronn
proved the following theorem [Hei34].

Theorem 4. The average number of iterations for the Euclidean algorithm for fixed
n is

τn =
12 ln 2

π2
lnn+O((log log n)4).

The error estimate was improved toO(log log n3) by Tonkov [Ton71]. Then, Porter
showed that the error term in this estimate is a constant, plus a polynomially-small
correction, proving the sharper form [Por75]:

τn =
12 ln 2

π2
lnn+ C +O(n−1/6+ϵ).

for all ϵ > 0. The constant C in this term is known as Porter’s Constant, defined
by

C =
24

π2

(
B +

3

16
+

(
γ +

5

16

)
ln 2− 7

8
(ln 2)2 +

2

π2
ζ ′(2) ln 2

)
+ 2.5,

B =
∞∑
k=1

1

k
(H2k−1 −Hk − ln 2),

I =

∫ 1/
√
8

0

t2 ln t

(t2 + 1)1/2
dt,

and Hk denotes the harmonic series sum:

Hk =
k∑

m=1

1

m
≈ ln k + γ,

where γ is the Euler-Mascheroni constant. In 1976, Donald Knuth evaluated C to
high accuracy [Knu76].

The integral I is readily evaluated by expanding into power series,

I =

∫ 1/
√
8

0

∞∑
k=0

(
− 1

2k

)
t2−2k ln t dt =

∞∑
k=0

(−1)k+1

(
2

2k

)
2−5k−4.5(2k+3)−1(1+(3k+4.5) ln 2).

6 TRISHA SABADRA

To evaluate B, let B′ = B + 1
2
ζ(2), so that B′ =

∑∞
k=1Ak/k, where

An = H2n −Hn − ln 2 = − 1

4n
+

r∑
k=1

B2k(1− 2−2k)

nk
+O(n−2r),

by Euler’s summation formula. Letting ζm(s) =
∑

k≤m k−s = O(m1−s), we have

B′ =
∑

1≤k<m

1

k
Ak −

1

4n
ζm(2) +

∑
1≤k<m

B2k(1− 2−2k)

nk
ζm(2k + 1) +O(m−2r).

For all fixed r. The necessary values of ζm(s) can themselves be obtained from
Euler’s summation formula,

ζm(s) = m−s +
1

2
m−s +

∑
1≤k<r

B2km
−s−2k

s− 1
+O(m−s−2r−1).

Finally, we need to compute ζ ′(2). Once again, Euler’s summation formula gives
a satisfactory approach, since it implies that

−ζ ′(s) = m−s lnm+
m−s

2
+

lnm

2ms
+

∑
1≤k<r

B2k

2kms−2k
(s− 1) +O(m−s−2r−1 lnm).

Using a computer, we can find these approximations to 40 digits:

12 ln 2

π2
= 0.84276 59132 72194 51690 72631 93963 96411 55945,

B = −1.16448 10529 30025 01180 53126 40319 36021 74884,

I = −0.01958 27168 97011 53218 32291 14034 54827 84625,

C = 1.46707 80794 33975 47289 77984 84707 22995 34499.

References

[Hei34] Hans Heilbronn. On the average length of a class of finite continued fractions. Journal of
the London Mathematical Society, 1934.

[Knu76] David E. Knuth. Evaluation of porter’s constant. Computers Mathematics with Applica-
tions, 2:137–139, 1976.

[Knu81] David E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, 1981.
[Por75] J.W. Porter. On a theorem of heilbronn. Journal of the London Mathematical Society,

1975.
[Sha94] Jeremy Shallit. Origins of the analysis of the euclidean algorithm. Historia Mathematica,

21:401–419, 1994.
[Ton71] V. A. Tonkov. On the average length of euclidean algorithm. Seriya Matematicheskaya,

1971.

Euler Circle, Mountain View, CA 94040

	1. Introduction to the Euclidean Algorithm
	2. Worst Case Complexity
	3. Average-Case Complexity
	References

