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1. Introduction

Consider this problem, which was first solved in [1]: What numbers (in base 10) are there
such that appending 1 to both ends of the number is the same as multiplication by 99? This
is equivalent to asking when

(1.1) 10k+2 + 10x+ 1 = 99x

where k = ⌊log(x)⌋. This is in fact the only k that has a chance of working, so the condition
is unnecessary.

Thus we can rearrange the problem as follows: Find x, k such that

(1.2)
10k+2 + 1

89
= x

As long as

(1.3) 10k+2 = −1 (mod 89)

we can determine x from k, so we just need to solve this. It turns out that ord8910 = 44, so
1022+44i = −1 (mod 89). Thus

(1.4) x =
1022+44i + 1

89
.

2. A Generalization

We can generalize this problem to any base b: find x such that

(2.1) bk+2 + bx+ 1 = (b2 − 1)x, k = ⌊log(x)⌋.
or

(2.2) x =
bk+2 + 1

b2 − b− 1
, k = ⌊log(x)⌋.

For any b > 3, we see that

(2.3) bk <
bk+2 + 1

b2 − b− 1
< bk+1,

so the condition on k is unnecessary.
As before, this reduces to solving

(2.4) gk+2 = −1 (mod b2 − b− 1).

Let m = b2 − b − 1. For (8) to have a solution t = k + 2, ordm(b) must be even and
t = ordm(b)/2. For any prime p|m, let psp be the highest power dividing m. Then gt ≡ −1
(mod psp). Notice that b2 − b − 1 is always odd, so 2 ∤ m. Notice that b2 − b − 1 is
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always odd, so 2 ∤ m. For there to exist solutions (mod psp), ordpsp (b) must be even. Since
ordpsp (b) is a power of p times ordp(b), this is equivalent to ordp(b) being even. Since
ordm(b) = lcm{ordpsp (b)}, we can write t = ordm(b) = ordpsp (b)c for some c. In order for (8)
to hold (mod psp), we need c to be odd for there to be a solution. Thus a solution exists if
and only if the highest powers of 2 dividing ordp(b) are the same for every p|m. We have
just proven the following theorem.

Theorem 2.1. The generalized problem has a solution in base b if and only if there exists
an X such that

(2.5) vp(ordp(b)) = X

for every p|b.

An interesting problem is to find the probability that for a randomly chosen b the problem
has a solution in base b. Let the set of all bases b such that the generalized problem does
have a solution be B. Then we want to find the density of B.
Surely, b /∈ B if for some p|b2 − b − 1, ordp(b) is odd. Let p ≡ 3 (mod 4) be a prime for

which which x2 − x − 1 splits in Fp. Let u, v be the roots of x2 − x − 1 (mod p), so that
uv = −1. Since

(2.6)

(
−1

p

)
= −1

one of u, v must be a residue modulo p. Let that residue be ap. Then for any b ≡ ap (mod p),
we have that p|b2 − b− 1. Since

(2.7) b
p−1
2 =

(
ap
p

)
= 1

and p−1
2

is odd, ordpb is odd, so b /∈ B. Basically, each prime p for which x2−x− 1 (mod p)
splits removes a whole residue class from b.

Now we need to find which primes p for which f(x) = x2 − x− 1 splits in Fp. Let the set
of these primes be C. We can easily see that the density of B is

(2.8) 1−
∏
p∈C

(
1− 1

p

)
.

Now we need a lemma.

Lemma 2.2. Let {ai} be a sequence of numbers in [0, 1]. Then

(2.9)
∞∏
i=1

(1− ai) = 0

if and only if

(2.10)
∞∑
i=1

ai = ∞

Proof. Taking logarithms, the (13) is equivalent to

(2.11)
∞∑
i=1

ln(1− ai)
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diverging. Taking the Taylor series for ln(1− x), we see that

(2.12)
∞∑
i=1

ln(1− ai) =
∞∑
i=1

ai +
a2i
2

+
a3i
3
. . .

so

(2.13)
∞∑
i=1

ai +
a2i
2

+
a3i
22

· · · ≤
∞∑
i=1

ln(1− ai) ≤
∞∑
i=1

ai + a2i + a3i . . .

or

(2.14)
∞∑
i=1

ai
1− ai

2

≤
∞∑
i=1

ln(1− ai)
∞∑
i=1

∞∑
i=1

ai
1− ai

.

Because 0 ≤ ai < 1, both the terms of left and right sums are O(ai), so the terms of the
middle sum are O(ai) as well. Thus (14) diverges alongside (13). ■

If we can prove S contains a residue class of primes, then (14) is true by Dirichlet’s theorem.

Recall the quadratic formula in R: the solutions to x2+ px+ q are given by
−p±

√
p2−4q

2
. The

proof works for any field F where 1 + 1 ̸= 0 or char(F ) ̸= 2, which includes Fp.

Thus the quadratic x2−x−1 (mod p) splits if and only if (disc(f)
p

) = 1, or (5
p
), i.e., p ≡ ±1

(mod 5). Thus, if p ≡ 3 (mod 4) and p ≡ ±1 (mod 5), then p ∈ C, so C contains the primes
equivalent to p ≡ 11, 19 (mod 20). Thus the density of B is 0 by lemma 2.2.

Theorem 2.3. The probability a randomly chosen base has a solution to the generalized
problem is 0.

3. Another Generalization

This problem has several obvious generalizations. The rest of this paper will be focused
on solutions to these generalizations.

The most general generalization is to find when

(3.1) bt ≡ −1 (mod f(b))

has a solution. This is far too broad to have a general solution, so we will have to be satisfied
with some special cases.

If we add 1 to both ends of a base b integer, n times, we get the equation

(3.2)
bn − 1

b− 1
(bt + 1) = 0 (mod b2n − bn − 1),

Where t = k + 3. Since gcd( b
n−1
b−1

, b2n − bn − 1) = 1 we really need to solve

(3.3) bt + 1 ≡ 0 (mod b2n − bn − 1).

So we have just gotten a special case of the first generalization! Let Bn be the set of all
bases b such that this has a solution. b ∈ B if and only if ordf(bn)(b) is even. For fixed b,
let m = b2n − bn − 1, and let ordm(b) = x and ordm(b

n) = y. Then x|yn. Thus y being odd
implies that x is odd as long as n is odd. Thus, when n is odd, b ∈ Bn only if bn ∈ B, so the
density of Bn in N is B’s density in Nn.

Unfortunately, this doesn’t help us find the density of Bn, since its possible that B’s
density in Nn is greater than B’s density in N since the nth powers have 0 density in N. For
example, if B = N3, then its density in N3 is obviously 1, but the cubes have density 0 in
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N. And we also have no way to determine if a nth power is in B, since that depends on its
residue (mod p), and there’s no nice way to find the nth powers (mod p).
However, we can get quite close to solving this using a special case of Frobenius’ density

theorem [2].

Theorem 3.1. Let f be a polynomial of degree n. Then the set of primes for which f splits
completely has density as 1

|Gal(f)| ≥
1
n!
.

This is actually a special case of the more general Chebotarev’s density theorem. We
will also need a second theorem. The following definition will make the statement more
convenient.

Definition 3.2. A set A ∈ N is said to be large if

(3.4)
∑
a∈A

1

a
= ∞.

Theorem 3.3. Let A ∈ N be a large set, and let B have positive density in A. Then B is
large.

Now let’s see what these theorems have to do with the density of Bn. Let the set of all
primes p ≡ 3 (mod 4) for which f(bn) (mod p) splits completely be Cn. Then we basically
just do the same thing as in the case n = 1 to see that the density of B is

(3.5) 1−
∏
p∈Cn

(
1− 1

c

)
which is equal to 0 if and only if

(3.6)
∑
c∈C

1

c
= ∞,

that is, if C is a large set. If we could apply the Frobenius density theorem on Bn, then this
would be true, since Bn would be a subset of P with positive density and thus a large set
by theorem 3.2. However, we can’t do that because we restricted Bn to the primes p ≡ 3
(mod 4). So even though we know that f(bn) splits completely in Fp for a decent fraction of
p, it’s possible that nearly all of these primes are 1 (mod 4), so we can’t use the Frobenius
density theorem.
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