A PROBLEM

STEPHEN ZHOU

1. INTRODUCTION

Consider this problem, which was first solved in [\[1\]](#page-3-0): What numbers (in base 10) are there such that appending 1 to both ends of the number is the same as multiplication by 99? This is equivalent to asking when

$$
(1.1)\qquad \qquad 10^{k+2} + 10x + 1 = 99x
$$

where $k = \lfloor \log(x) \rfloor$. This is in fact the only k that has a chance of working, so the condition is unnecessary.

Thus we can rearrange the problem as follows: Find x, k such that

(1.2)
$$
\frac{10^{k+2} + 1}{89} = x
$$

As long as

$$
(1.3) \t10^{k+2} = -1 \pmod{89}
$$

we can determine x from k, so we just need to solve this. It turns out that $\text{ord}_{89}10 = 44$, so $10^{22+44i} = -1 \pmod{89}$. Thus

(1.4)
$$
x = \frac{10^{22+44i} + 1}{89}.
$$

2. A Generalization

We can generalize this problem to any base b : find x such that

(2.1)
$$
b^{k+2} + bx + 1 = (b^2 - 1)x, k = \lfloor \log(x) \rfloor.
$$

or

(2.2)
$$
x = \frac{b^{k+2} + 1}{b^2 - b - 1}, k = \lfloor \log(x) \rfloor.
$$

For any $b > 3$, we see that

(2.3)
$$
b^{k} < \frac{b^{k+2} + 1}{b^2 - b - 1} < b^{k+1},
$$

so the condition on k is unnecessary.

As before, this reduces to solving

(2.4)
$$
g^{k+2} = -1 \pmod{b^2 - b - 1}.
$$

Let $m = b^2 - b - 1$. For (8) to have a solution $t = k + 2$, ord_m(b) must be even and $t = \text{ord}_m(b)/2$. For any prime $p|m$, let p^{s_p} be the highest power dividing m. Then $g^t \equiv -1$ (mod p^{s_p}). Notice that $b^2 - b - 1$ is always odd, so $2 \nmid m$. Notice that $b^2 - b - 1$ is

Date: June 4, 2024.

2 STEPHEN ZHOU

always odd, so $2 \nmid m$. For there to exist solutions (mod p^{s_p}), ord $_{p^{s_p}}(b)$ must be even. Since $\text{ord}_{p^{s_p}}(b)$ is a power of p times $\text{ord}_p(b)$, this is equivalent to $\text{ord}_p(b)$ being even. Since $\text{ord}_m(b) = \text{lcm}\{\text{ord}_{p^{sp}}(b)\}\text{, we can write } t = \text{ord}_m(b) = \text{ord}_{p^{sp}}(b)c$ for some c. In order for (8) to hold (mod p^{s_p}), we need c to be odd for there to be a solution. Thus a solution exists if and only if the highest powers of 2 dividing $\text{ord}_p(b)$ are the same for every $p|m$. We have just proven the following theorem.

Theorem 2.1. The generalized problem has a solution in base b if and only if there exists an X such that

$$
(2.5) \t\t v_p(\text{ord}_p(b)) = X
$$

for every $p|b$.

An interesting problem is to find the probability that for a randomly chosen b the problem has a solution in base b . Let the set of all bases b such that the generalized problem does have a solution be B. Then we want to find the density of B.

Surely, $b \notin B$ if for some $p|b^2 - b - 1$, $\text{ord}_p(b)$ is odd. Let $p \equiv 3 \pmod{4}$ be a prime for which which $x^2 - x - 1$ splits in F_p . Let u, v be the roots of $x^2 - x - 1 \pmod{p}$, so that $uv = -1$. Since

$$
\left(\frac{-1}{p}\right) = -1
$$

one of u, v must be a residue modulo p. Let that residue be a_p . Then for any $b \equiv a_p \pmod{p}$, we have that $p/b^2 - b - 1$. Since

$$
(2.7) \t\t b^{\frac{p-1}{2}} = \left(\frac{a_p}{p}\right) = 1
$$

and $\frac{p-1}{2}$ is odd, ord_pb is odd, so $b \notin B$. Basically, each prime p for which $x^2 - x - 1 \pmod{p}$ splits removes a whole residue class from b.

Now we need to find which primes p for which $f(x) = x^2 - x - 1$ splits in F_p . Let the set of these primes be C . We can easily see that the density of B is

.

$$
(2.8)\qquad \qquad 1-\prod_{p\in C}\left(1-\frac{1}{p}\right)
$$

Now we need a lemma.

Lemma 2.2. Let $\{a_i\}$ be a sequence of numbers in [0, 1]. Then

(2.9)
$$
\prod_{i=1}^{\infty} (1 - a_i) = 0
$$

if and only if

$$
\sum_{i=1}^{\infty} a_i = \infty
$$

Proof. Taking logarithms, the (13) is equivalent to

$$
\sum_{i=1}^{\infty} \ln(1 - a_i)
$$

A PROBLEM 3

diverging. Taking the Taylor series for $\ln(1-x)$, we see that

(2.12)
$$
\sum_{i=1}^{\infty} \ln(1 - a_i) = \sum_{i=1}^{\infty} a_i + \frac{a_i^2}{2} + \frac{a_i^3}{3} \dots
$$

so

(2.13)
$$
\sum_{i=1}^{\infty} a_i + \frac{a_i^2}{2} + \frac{a_i^3}{2^2} \cdots \le \sum_{i=1}^{\infty} \ln(1 - a_i) \le \sum_{i=1}^{\infty} a_i + a_i^2 + a_i^3 \ldots
$$

or

(2.14)
$$
\sum_{i=1}^{\infty} \frac{a_i}{1 - \frac{a_i}{2}} \le \sum_{i=1}^{\infty} \ln(1 - a_i) \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \frac{a_i}{1 - a_i}.
$$

Because $0 \leq a_i < 1$, both the terms of left and right sums are $O(a_i)$, so the terms of the middle sum are $O(a_i)$ as well. Thus (14) diverges alongside (13).

If we can prove S contains a residue class of primes, then (14) is true by Dirichlet's theorem. Recall the quadratic formula in R: the solutions to $x^2 + px + q$ are given by $\frac{-p \pm \sqrt{p^2-4q}}{2}$ $\frac{p^2-4q}{2}$. The proof works for any field F where $1 + 1 \neq 0$ or $char(F) \neq 2$, which includes F_p .

Thus the quadratic $x^2 - x - 1 \pmod{p}$ splits if and only if $\left(\frac{\text{disc}(f)}{p}\right) = 1$, or $\left(\frac{5}{p}\right)$, i.e., $p \equiv \pm 1$ (mod 5). Thus, if $p \equiv 3 \pmod{4}$ and $p \equiv \pm 1 \pmod{5}$, then $p \in C$, so C contains the primes equivalent to $p \equiv 11, 19 \pmod{20}$. Thus the density of B is 0 by lemma 2.2.

Theorem 2.3. The probability a randomly chosen base has a solution to the generalized problem is 0.

3. Another Generalization

This problem has several obvious generalizations. The rest of this paper will be focused on solutions to these generalizations.

The most general generalization is to find when

$$
(3.1) \t\t\t bt \equiv -1 \pmod{f(b)}
$$

has a solution. This is far too broad to have a general solution, so we will have to be satisfied with some special cases.

If we add 1 to both ends of a base b integer, n times, we get the equation

(3.2)
$$
\frac{b^n - 1}{b - 1}(b^t + 1) = 0 \pmod{b^{2n} - b^n - 1},
$$

Where $t = k + 3$. Since $gcd(\frac{b^{n-1}}{b-1})$ $\frac{b^{n-1}}{b-1}, b^{2n} - b^{n} - 1$ = 1 we really need to solve

(3.3)
$$
b^t + 1 \equiv 0 \pmod{b^{2n} - b^n - 1}.
$$

So we have just gotten a special case of the first generalization! Let B_n be the set of all bases b such that this has a solution. $b \in B$ if and only if $\text{ord}_{f(b^n)}(b)$ is even. For fixed b, let $m = b^{2n} - b^n - 1$, and let $\text{ord}_m(b) = x$ and $\text{ord}_m(b^n) = y$. Then $x|yn$. Thus y being odd implies that x is odd as long as n is odd. Thus, when n is odd, $b \in B_n$ only if $b^n \in B$, so the density of B_n in N is B's density in \mathbb{N}^n .

Unfortunately, this doesn't help us find the density of B_n , since its possible that B's density in \mathbb{N}^n is greater than B's density in $\mathbb N$ since the n^{th} powers have 0 density in $\mathbb N$. For example, if $B = \mathbb{N}^3$, then its density in \mathbb{N}^3 is obviously 1, but the cubes have density 0 in

N. And we also have no way to determine if a nth power is in B, since that depends on its residue (mod p), and there's no nice way to find the nth powers (mod p).

However, we can get quite close to solving this using a special case of Frobenius' density theorem [\[2\]](#page-3-1).

Theorem 3.1. Let f be a polynomial of degree n. Then the set of primes for which f splits completely has density as $\frac{1}{|\text{Gal}(f)|} \geq \frac{1}{n}$ $\frac{1}{n!}$.

This is actually a special case of the more general Chebotarev's density theorem. We will also need a second theorem. The following definition will make the statement more convenient.

Definition 3.2. A set $A \in \mathbb{N}$ is said to be *large* if

(3.4)
$$
\sum_{a \in A} \frac{1}{a} = \infty.
$$

Theorem 3.3. Let $A \in \mathbb{N}$ be a large set, and let B have positive density in A. Then B is large.

Now let's see what these theorems have to do with the density of B_n . Let the set of all primes $p \equiv 3 \pmod{4}$ for which $f(b^n) \pmod{p}$ splits completely be C_n . Then we basically just do the same thing as in the case $n = 1$ to see that the density of B is

$$
(3.5) \t\t\t 1 - \prod_{p \in C_n} \left(1 - \frac{1}{c}\right)
$$

which is equal to 0 if and only if

(3.6)
$$
\sum_{c \in C} \frac{1}{c} = \infty,
$$

that is, if C is a large set. If we could apply the Frobenius density theorem on B_n , then this would be true, since B_n would be a subset of $\mathbb P$ with positive density and thus a large set by theorem 3.2. However, we can't do that because we restricted B_n to the primes $p \equiv 3$ (mod 4). So even though we know that $f(b^n)$ splits completely in F_p for a decent fraction of p , it's possible that nearly all of these primes are 1 (mod 4), so we can't use the Frobenius density theorem.

REFERENCES

- [1] "Carl Pomerance" "J.L. Hunsucker". "On An Interesting Property Of 112359550561797752809". In: Fibonnacci Quarterly 13.4 (1975), pp. 331–333.
- [2] "H.W. Lenstra Jr. "P. Stevenhagen". "Chebotarev and his Density Theorem". In: ().