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Abstract. In this paper, we discuss the phenomenon of Chebyshev Bias and find measures
for the density of when primes modulo 4, assuming certain parts of the Generalized Riemann
Hypothesis (GRH) and Deep Riemann Hypothesis (DRH). We also consider generalized
Chebyshev Bias over different modulos and connect this to the Prime Number Theorem
(PNT) on Arithmetic Progressions.

1. Introduction

In 1837, Dirichlet proved that there are infinitely many primes p satisfying p ≡ a (mod q)
for a, q with gcd(a, q) = 1. 16 years later, Pafnuty Chebyshev, in a letter to P.N. Fuss [1],
made the observation that many more primes are congruent to 3 modulo 4 than 1 modulo
4. He phrased it as the assertion

lim
x→∞

∑
p>2

(−1)(p−1)/2e−p/x = −∞

where p ranges over primes.

Chebyshev’s observation gave rise to the field of comparative number theory, which
compares how often prime numbers of different residue classes occur. This paper will focus
on further advances made in comparative number theory stemming from Chebyshev’s obser-
vation.

To understand the paper, a surface level knowledge of analytic number theory concepts,
such as Dirichlet L-functions, is required.

2. Definitions and Basic Properties

Definition 2.1. Define π(x; q, a) to be the number of primes p less than or equal to x that
are congruent to a (mod q). We’ll make the assumption that x is prime as well throughout
the paper, as other cases are trivial.

Chebyshev’s assertion is that π(x; 4, 3) > π(x; 4, 1) more often than not.

Example 2.3. π(100, 3, 4) = 14 and π(100, 1, 4) = 10.

It is also useful to define a way of comparing functions:

Definition 2.4. We say that f(x) ∼ g(x) for two functions f, g if

lim
x→∞

f(x)

g(x)
= 1.
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As an example, the Prime Number Theorem [2] states that

π(x) ∼ x

log x
.

3. Density of Chebyshev Bias

A natural question that arises with Chebyshev Bias is whether or not π(x; 4, 3) > π(x; 4, 1)
is true for all x. It is not; the first few equality cases are at x = 5, 17, 41, . . . , and the first
counterexample for the nontsrict inequality is at x = 26861. With this information, a second
question arises; how much more often does the inequality π(x; 4, 3) > π(x; 4, 1) occur than
the inequality π(x; 4, 3) < π(x; 4, 1)?

Conjecture 3.1. Knapowski-Turan Conjecture. Let A(x) = {x1 < x | π(x; 4, 3) >
π(x; 4, 1)}. The density of this set is 1; in other words,

lim
x→∞

|A(x)|
x

= 1.

This conjecture was disproved by Kaczorowski [3] in 1995 under the assumption of the Gen-
eralized Riemann Hypothesis1 (GRH).

The disproving of the Knapowski-Turan Conjecture shows that the natural density of A(x)
is not straightforward. In this section, we will discuss how to better approximate the density
of A(x), using another measure of density.

Definition 3.2. Define the logarithmic density of a set S to be

δ(S) = lim
X→∞

1

logX

∫
t∈S,

2≤t≤X

dt

t
.

As it turns out, δ(A) = 0.9959 . . . [5], showing a clear bias. As Dirichlet proved in his
theorem of arithmetic progressions, the number of primes of the form 4k + 1 and 4k + 3 are
both infinite; Chebyshev’s Bias claims that primes of the form 4k + 3 occur earlier. Using
logarithmic density, earlier terms are weighted more than later terms, hence allowing us
to compare the two counts. Logarithmic density works better than natural density in this
regard, because natural density weighs earlier and later primes equally.

While we know that π(x; 4, 3) > π(x; 4, 1) much more often than π(x; 4, 1) > π(x; 4, 3),
we don’t know how to compare π(x; 4, 3) to π(x; 4, 1). Koyama and Kurokawa [6] recently
presented. As it turns out, just like we did with logarithmic density, we can adopt another

1The Generalized Riemann Hypothesis states that [3], for any Dirichlet character χmodulo k, the Dirichlet
L-function L(χ, s), which in expanded form is

L(χ, s) =

∞∑
n=1

χ(n)

ns
,

has all of it’s nontrivial zeroes on the line R(s) = 1
2 .



CHEBYSHEV BIAS 3

counting function that weighs earlier primes larger, as follows.

Definition 3.3. Define a new counting function, πs(x; q, a), for s ≥ 0, as

πs(x; q, a) =
∑

p<x: prime
p≡a (mod q)

1

ps
.

Now, to illustrate the use of this counting function, it’s also important to understand the
Deep Riemann Hypothesis2 (DRH) for the Dirichlet L-character L(s, χ−4).

Theorem 3.4. (DRH for L(s, χ−4).) The limit

lim
x→∞

∏
p≤x

(
1− χ(p)p−

1
2

)−1

exists, and is nonzero.

Note that the Dirichlet Character χ−4(n) is 1 when for n ≡ 1 (mod 4), and −1 for n ≡ 3
(mod 4). Now, we present a proof of the following theorem, from Koyama and Kurokawa
[6], which relies on the assumption that DRH is true.

Theorem 3.5.

π 1
2
(x; 4, 3)− π 1

2
(x; 4, 1) ∼ 1

2
log log x.

Proof: Start with DRH for L(s, χ−4) as in Theorem 3.4. Since the limit is finite and
nonzero, we can take the logarithm of both sides, which is bounded:∑

p≤x

log
(
1− χ(p)p−

1
2

)−1

= O(1).

The left hand side can be expanded as∑
p≤x

∞∑
k=1

χ(p)k

kp
k
2

.

Note that, for k ≥ 3, the subseries is absolutely convergent because of the estimation∑
p≤x

∞∑
k=1

∣∣∣∣χ(p)k
kp

k
2

∣∣∣∣ ≤ 1

3

∑
p≤x

∞∑
k=1

1

pk/2
≤ ζ

(
3

2

)
due to the geometric series calcuation

∞∑
k=3

1

k
3
2

=

√
p

√
p− 1

· 1

p
3
2

≤ 3

p
3
2

.

2Goldfeld [7] proved that the DRH imlies the GRH for L functions that are attached to elliptic curves E,
while GRH implies the regular Riemann Hypothesis for the Dirichlet Character χ(n) = 1.
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Now, considering the subseries for k = 2, note from Euler’s Theorem [8] that∑
p≤x

χ(p)2

2p
=

∑
p≤x

1

2p
=

1

2
log log x+O(1).

What’s left is the subseries at k = 1, which is simply∑
p≤x

χ(p)
√
p
.

Since the original summation is simply O(1), it follows from subtracting the subseries at
k = 2 and k ≥ 3 that ∑

p≤x

χ(p)
√
p

= −1

2
log log x+O(1).

Since χ(p) = −1 for p ≡ 3 (mod 4) and χ(p) = 1 for p ≡ 1 (mod 4), the result follows by
taking the negatives of both sides. □

This also gives us another corollary about density:

Corollary 3.6. The natural density of the set

A(s) = {x > 0 | πs(x; 4, 3)− πs(x; 4, 1) > 0}
is equal to 1.

4. Generalized Chebyshev Bias

We examined the ”original” Chebyshev Bias for modulo 4, but it turns out that the dis-
tributions of primes among residue classes in other modulos also show curious differences.
For example:

Example 4.1. Consider π(x; 3, 1) and π(x; 3, 2). More often than not, π(x; 3, 2) ≥
π(x; 3, 1). In fact, the logarithmic density of the set B = {x > 0 | π(x; 3, 2)− π(x; 3, 1) ≥ 0}
is about 0.9990 . . . . The first x that is not an element of B is 608981813029.

Notice that 2 is a non-quadratic residue (NQR) in modulo 3, as is 3 in modulo 4, while 1
is a quadratic residue (QR) in modulo 3, as it is in modulo 4. Through this observation, the
bias can be generalized:

Theorem 4.2. Suppose (m
a

)
= −1,

(n
a

)
= 1.

Our only requirements for m and n are that gcd(a,m) = gcd(a, n) = 1. Then

π(x,m, a) > π(x, n, a)

more often than not. This can also be written as

δ(Sm,n) > 0.5,

where Sm,n = {x > 0 | π(x;m, a)− π(x;n, a) > 0}.
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In fact, using this generalization, we arrive at something similar to Theorem 3.5, in a
more generalized form [9]:

Theorem 4.3. Define the Dirichlet L-Character

χq(a) =

(
a

q

)
,

i.e. the standard Jacobi Symbol. It follows that∑
b∈(Z/qZ)×

Quadratic Non-Residue

π 1
2
(x; q, b)−

∑
a∈(Z/qZ)×

Quadratic Residue

π 1
2
(x; q, a) ∼

(
1

2
+m

)
log log x

where m = ords= 1
2
L(s, χ). In particular, for χq = χ−4, we get the result from Theroem 3.5.

Note that the result in Theorem 4.2 is not inconsistent with the Prime Number Theorem
for Arithmetic Progressions, which states the following:

Theorem 4.4. Let a1, . . . , aϕ(m) be the residue classes for modulo m describing numbers
relatively prime to m. Then, it follows that

π(x;m, a1) ∼ π(x;m, a2) ∼ · · · ∼ π(x;m, aϕ(m)) ∼
1

ϕ(m)

x

log x
.

In layman’s terms, the Prime Number Theorem for Arithmetic Progression says that the
primes are evenly distributed among all residue classes for a certain modulo. Chebyshev
Bias does not contradict this. Chebyshev Bias is more of race between residues; for earlier
x, the number of primes that are 3 modulo 4 outnumbers the number of primes that are 1
mod 4, less than x. However, in the long run behavior as x goes to infinity, the number of
primes that are 1 modulo 4 (catches up).
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