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Abstract
Let pn be the n-th prime, and define the maximal prime gap G(x) as

G(x) = max
pn≤x

(pn+1 − pn).

We give a summary of the upper bounds that have been obtained for G(x) over the last

century, particularly Rankin’s lower bound, and the improvement to it discovered inde-

pendently by Ford-Green-Konyagin-Tao and Maynard in 2014. We go over a sketch of

Rankin’s, Ford-Green-Konyagin-Tao’s, and Maynard’s proofs of their bounds, omitting

technical details but still presenting the main ideas.

1 Introduction

Prime numbers have long been known to be fundamental in the study of number theory.
Around 300BC, the Greek Mathematician Euclid was one of the first to provide a treatise
on prime numbers and proved several key facts about primes, including that there are in-
finitely many such prime numbers, as well as proving the well-known fundamental theorem
of arithmetic. This was all written up in his textbook, The Elements, in what is considered
today to be one of the most influential textbooks of all time. Since then, mathematicians
have long held a keen interest in prime numbers, with the study of the distribution of primes
being central to analytic number theory.

Notation and Conventions

As is standard convention, we shall use the notation logn x to mean the n-th iterated loga-
rithm. That is log1 x = log x and

logn+1 x = log(logn x) for all n ≥ 1.

We also make frequent use of Vinogradov’s notation f � g to mean f = O(g) and f � g
to mean g = O(f).

Let pn denote the n-th prime number. For all X ≥ 2, we define G(X) as the maximal prime
gap

G(X) = max
pn≤X

(pn+1 − pn).

Since the early 20th century, many mathematicians have studied the growth rate of G(X)
and several results have been proven regarding the function. We shall first give a short
history of the lower bounds that have been proven for G(X) to date. We also consider
some conjectural results about the growth rate of G(X), as well as look at some recent
computational results.
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We start by giving an overview of the history of lower bounds for G(X), in Table 1.

Bound for G(X) Proved by

G(X) ≥ (1 + o(1)) logX PNT and the pigeonhole principle

G(X) ≥ (2 + o(1)) logX Backlund in 1929

G(X) ≥ (4 + o(1)) logX Brauer-Zeitz in 1930

G(X)� c logX log3X
log4X

Westzynthius in 1931

G(X)� c logX log2X
(log3X)2

Erdős in 1935

G(X)� c logX log2 log4X
(log3X)2

Rankin in 1938

Table 1. Early Bounds for G(X)

The c in Rankin’s bound was originally 1
3
, but it was improved by several other authors.

Constant c Proved by

c = 1
2e
γ Schönhage (1963)

c = eγ Ricci (1952), Rankin (1963)

c = 1.31256eγ Maier–Pomerance (1990)

c = 2eγ Pintz (1997)

Table 2. Early Bounds for c

Then, in 2014, Ford-Green-Konyagin-Tao and Maynard independently proved that the c in
Rankin’s bound could be taken to be arbitrarly large. In fact, they proved

G(X)� logX log2X log4X

log3X
, (1)

which is even stronger. In addition to outlining a proof of Rankin’s bound, we shall also
outline the key new contribution which is a generalisation of a hypergraph covering theorem
from Pippenger, Spencer. This result is based on the Rödl nibble method.

In 1920, Cramér used a probabilistic model of the primes to conjecture that

G(X)� log2X.

The model was tweaked by Granville in 1995, and the new model predicted the lower bound

G(X) ≥ (2e−γ − o(1)) log2X.

The weaker version G(X) = O(log2X) is called Cramér’s conjecture.
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2 Some Elementary Bounds

To get a lower bound for G(X), we can start by using the Pigeonhole principle and the
Prime Number Theorem. The Prime Number Theorem tells us that there are ∼ X

logX
primes

in [1, X]. If the gap between them were to be less than (1 + o(1)) logX, then the spacing
between the first and last primes in [1, X] would be strictly less than

X

logX
· (1 + o(1)) logX = X + o(X).

This is false because we can choose X to be a prime number, and the spacing would be equal
to X − 2 = X + o(X). Thus, G(X) ≥ 1 + o(1) logX.

We now look at another way to show that the are arbitrarily long gaps in the primes.
Consider the sequence

n! + 2, n! + 3, . . . , n! + n.

Note that every number in this sequence must be composite, since 2 divides the first number,
3 divides the second number, and so on. Thus the biggest prime less than n! + 2 and the
smallest prime more than n! +n are consecutive, and separated by a gap of at least n. Thus
G(X) = n, where p < X, and p is the smallest prime more than n! + n. Using Stirling’s
formula, we see that

X ≈ n! ≈
√

2πn
(n
e

)n
.

Then, we see that

n =
n log n

log n
≈

n log
(
n
e

)
log
(
n log

(
n
e

)) ≈ log
(√

2πn
(
n
e

)n)
log log

(√
2πn

(
n
e

)n) ≈ logX

log logX
.

Thus we get the bound

G(X) ≥ (1 + o(1))
logX

log logX
.

This is in fact much worse than the bound given by the Prime Number Theorem, but our
implementation of the idea is nowhere as efficient as it can be. The first step is to replace
the factorial n! =

∏
j≤n j with the primorial n# :=

∏
p≤n p. We have

log n# =
∑
p≤n

p = θ(n) ∼ n, (by PNT)

so n# ∼ en. Then, replacing the factorial with the primorial in our previous argument, we
get G(X) ≥ n, with X ≈ n# = en. Thus, we have the bound

G(X) ≥ (1 + o(1)) logX.

Notice that we have recovered our original bound for G(x)!

3 Improving the Bound

Now let us pause for a moment and consider why the primorial strategy works. The key
point is that the numbers

2 + n#, 3 + n#, . . . , n+ n#,

are all composite since each number from 2 to n is divisible by a prime p ≤ n. Thus the
residue classes 0 (mod p) for p ≤ n cover the set {2, . . . , n}.
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To generalize this idea, suppose that the residue classes ap (mod p) for p ≤ x cover the set
{1, . . . , y}. By the Chinese Remainder Theorem, there exists a number k ≤

∏
p≤x p = x#

with k ≡ −ap (mod p) for p ≤ x. Then, for each i ∈ {1, . . . , y} there is p ≤ x with i ≡ ap
(mod p), so k + i ≡ 0 (mod p); hence k + i is composite. Thus the set {k + 1, . . . , k + y}
consists of entirely composite numbers. Repeating our previous argument, this gives us that
G(k) ≥ y. Since k ≤ x#, we have G(x#) ≥ y. To generalize our old argument, suppose
that Y (x) is the maximum possible y. Then, since x# ∼ ex, we have G(ex) ≥ Y ((1 − ε)x)
for any ε > 0 and sufficiently large x. Taking logs, we get

G(x) ≥ Y ((1− ε) log x)

for sufficiently large x and ε > 0. This lets us get a bound for G(x) if we have a bound for
Y (x). Note that if Y (x) ∼ x, we get our old bound. But we can do better!

To visualize the problem, consider the following “shooting” metaphor. Suppose we have y
ducks numbered {1, . . . , y}. Our goal is to shoot all the ducks. To do this, we are given a
special rifle for each prime p ≤ x. When we fire the rifle for the prime p, we can shoot all
the ducks corresponding to one residue class modulo p. We can shoot each rifle only once.
Then, to find the maximum possible value of y, we want to find the best (most efficient)
“shooting strategies.” To do this, we will have to use many tricks and observations.

Observation 1 (Most of the Ducks)

The first observation is to note that we only need to shoot most of the ducks, rather than
all of them, provided we use slightly fewer primes.

Suppose we have used the primes p ≤ x
2

to shoot most of the ducks, and suppose there are
N ducks remaining. What is the largest value of N we can have that still allows us to use
the remaining primes from x

2
to x to shoot the N ducks?

Well, we don’t know anything about these N ducks, so it seems hard to show that we can
can shoot two birds with one stone, i.e use a single prime to shoot two or more ducks. But,
it is obvious that we can always shoot a single duck in each shot. Thus if there are M primes
from x

2
to x, we can shoot down at least M ducks. To find out what M is, we just need to

remember the Prime Number Theorem, which tells us that

N = M ≈ x

2 log x
.

Thus, if we use just the primes ≤ x
2
, we only need to shoot N − x

2 log x
of the ducks.

Observation 2 (Sieve of Eratosthenes)

One way to think about our setup of shooting ducks is as a sort of sieve: we try to sieve out
all the numbers from {1, . . . , y} using residue classes of the primes. This reminds us of the
Sieve of Eratosthenes.

The Sieve of Eratosthenes is a process to sieve out all the composite numbers from 2 to x,
leaving us with the primes from 2 to x. What we do is start from the first number, which
is 2, add it to our list of primes, and delete all the other multiples of 2. Then we take the
next number, 3, add it to our list of primes, and delete all other multiples of 3. Continue
this process until we reach the end of the list, and we have sieved out all the primes. This
is illustrated in Figure 1.
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Figure 1. The Sieve of Eratosthenes

To modify this for the duck-shooting problem, we do the same process, but we also delete
the prime from the list. This is equivalent to picking the residue classes 0 (mod p) for all the
primes p. Concretely, if we remove 0 (mod p) for all p ≤ x

4
(say), then the only remaining

ducks are 1 and the primes between x
4

and y, since all the composite numbers get sieved
out1.

Observation 3 (Smooth Numbers)

We can actually do better than the sieve of Eratosthenes. The thing to note is that the big
primes in the sieve contribute negligibly. For example, in the sieve pictured in Figure 1, the
prime 7 only deletes one number, 49.

Thus, instead of using all the primes from 1 to x
4
, let’s only use the primes p with p ≤ y

x
(these are the small primes that contribute a lot) and the primes z < p ≤ x

4
, where z is a

number that will be chosen later. Then, along with the primes from x
4

to y, it is evident
that the additional survivors must be z-smooth, i.e. their prime factors are all less than or
equal to z.

It turns out that if we choose z correctly, the number of additional ducks that survive is
negligible. The optimal choice is

z = x
c log3 x
log2 x

where c is a small positive number. The reason for this choice arises from the asymptotics
of smooth numbers, and it leads to all the logarithms in our final bounds.

1One thing to note is that this only works if y <
(
x
4

)2
, but it turns out that our best bound for y is much

smaller than that.
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4 Finishing the Bound and Improvements

We now have two sets of primes left: the medium-sized primes from y
x

and z, and the large
primes from x

4
and x

2
.

It turns out that for the medium sized primes, the best thing to do is to just randomly select
residue classes. This actually is pretty good at reducing the number of survivors. For the
large primes, as we discussed earlier, we will just use each prime to shoot one duck.

The steps we have discussed are more or less Rankin’s argument for his bound, and they
result in the bound

G(X) ≥ (c− o(1)) logX
log2X log4X

(log3X)2
,

where c is a small number.

Now, how do we improve this bound? Well, remember how we were only able to shoot one
duck with each of the large primes? It turns out that we actually can shoot two (or more)
birds with one stone. Thus, if we want to make the constant c larger, a natural thing to do
is to look for residue classes ap (mod p) that hit many primes in {1, . . . , y}.
There are in fact two ways to do this, discovered independently by Ford-Green-Konyagin-Tao
on one hand, and Maynard on the other. We give an overview of both approaches.

Ford-Green-Konyagin-Tao’s Approach

In this way to prove that c can get arbitrarily large, we start with Green-Tao’s Theorem,
which locates long arithmetic progressions a, a+ r, . . . , a+ (k− 1)r of prime numbers. What
Ford, Green, Konyagin, and Tao did was to modify this result to the case where r itself is a
small multiple of a large prime p. Then, the residue class a (mod p) contains many primes.
It turns out that this is enough to make the c in Rankin’s bound arbirarily large.

Maynard’s Approach

Maynard’s approach was to modify an argument that he and others had used to reduce
the bound for the twin prime conjecture to 246. The small prime gaps arguments produce
many numbers n such that n + h1, . . . , n + hk are prime. It turns out that a variation of
this argument can show that for any large prime p, one can find many n for which many
of n + h1p, . . . , n + hkp are prime. Then the residue class n (mod p) hits many primes in
{1, . . . , y}, and this gives an alternate approach in making the c in Rankin’s bound arbitrarily
large.

However, neither of these strategies reach the current best lower bound of

G(x) ≥ (c− o(1)) logX
log2X log4X

log3X
.

This is due to a “lack of coordination” between the residue classes ap (mod p) for large p.
What this means is that each of these residue classes contain many primes, but some of them
intersect each other, leading to a loss in efficiency.

This problem is a special case of a hypergraph coloring problem. In general, a hypergr-
pah coloring problem can be stated as follows: given a collection of subsets of a large set V ,
what is the most efficient way to cover most of V using as few subsets as possible?
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The Rödl Nibble

The Rödle Nibble is an efficient covering algorithm developed by Pippenger and Spencer in
1989. We give a brief outline of the method.

First, we select at random a small number of the residue classes ap (mod p). This is a
“nibble.” Then, we delete all the possible residue classes that intersect these ones, so all
the remaining residue classes we choose won’t intersect these ones. Then, we take another
“nibble,” and repeat the same process. Continuing this operation gives us a covering.

The Rödl nibble method eliminates almost all of the losses coming from overlapping residue
classes. Implementing this method leads to the final bound

G(X) ≥ (c− o(1)) logX
log2X log4X

log3X
,

for some c > 0. This is the currently the best known lower bound for G(X). Also, note that
this improves Rankin’s original bound by a factor of log3 x.

5 Computational Results

With the advent of computers in the mid-1900s, the computation of increasingly larger
primes, hence prime gaps, has become much more attainable. Table 3 summarizes the
values of G(x) calculated for x ≤ X.

Upper Bound X Attained by Year

3 · 106 Glaisher 1878

1 · 107 Western 1934

3.7 · 107 Lehmer 1957

1.044 · 108 Gruenberger, Armerding, Baker 1959

1.096 · 1010 Lander, Parkin 1967

4.444 · 1012 Brent 1980

7.263 · 1013 Yound, Potler 1989

1 · 1015 Nicely 1999

5 · 1016 Nyman 2003

4 · 1018 Oliveira e Silva, Herzog, Pardi 2012

264 PGS (Mersenne Forum) 2018

Table 3. Summary of values of G(x) calculated for x ≤ X.
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Referring back to Cramér’s conjecture, we can use these results to calculate the Cramér-
Shanks-Granville ratio

max
7<x≤264

G(x)

log2 x
= 0.9206.

This is still below the conjectured value of 1 by Cramér, and 2e−γ ≈ 1.12 by Granville.

Others have made more conjectured growth rates that are more fine-tuned than the simple
log2 x bounds predicted by Cramér. These are displayed in Figure 2 below.

Figure 2. Comparison of the true value of G(x) with the heuristic expectation

EG(x) calculated by Cramér’s model, along with other conjectured growth rates.

Now we look at computational results for Y (x), which by comparison to G(x), has been
going much slower. This is because even the best algorithms do not run substantially faster
than brute force, which is O(x#) = O(ex). Y (x) has been computed up till p57 = 269, the
57-th prime number.

Since it is hard to compute Y (x) exactly, we will calculate some sub-optimal lower bounds
based on a greedy approach. We will also modify this approach based on Rankin’s proof of
his bound for G(X).

To calculate this lower bound, we will calculate a lower bound inverse for Y (x). What this
means is that for an integer y, we let q(y) denote the minimal prime number p such that
{1, . . . , y} can be sieved out using only primes from 2 to p. We employ a greedy strategy
starting from the smallest prime.
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Algorithm 1 Greedy strategy

N ← {1, . . . , y}
p← 2 (start with the smallest prime)

while N 6= ∅ do

Choose residue class ap (mod p) which maximizes

|{n ∈ N : n ≡ ap (mod p)}|

Sieve out these elements from N : N 7→ {n ∈ N : n 6≡ ap (mod p)}

if N 6= ∅ then

increment the prime p to the next prime

else if N = ∅ then

output p as q(y)

end if

end while

Then we can define the inverse function

Y ′gr(x) = max{y : q(y) = x}.

However, q(y) is not non-decreasing (for example q(18) = 17 and q(21) = 13), so neither is
Y ′gr. We can rectify this problem by setting

Ygr(x) = max{y : q(y) ≤ x}.

This function, by definition, is non-decreasing.

To further improve Ygr(x), we modify the greedy algorithm by choosing residue classes ap = 0
for small primes p ≤ L, where L is a suitably chosen small value. Thus, this strategy mimics
Rankin’s bound.

To do this, let r(y, L) be the minimal prime p such that {1, . . . , y} can be sieved out using
primes from 2 to p by taking ap = 0 for p ≤ L and ap chosen greedily for p > L. Then we
define

YRan(x) = max{y : there exists L ≤ y such that r(y, L) ≤ x}.
This is a marginal improvement over the greedy algorithm. See Figure 3 for details.

One might wonder why there is no graph of EY(x), obtained from Cramér’s model, in
Figure 3. The reason is very simple: it’s infinite!

The reason for this is that it happens with nonzero probability that 2, 3, 4, 6, 12 are chosen
to be “prime” in Cramér’s model. Then the residue classes a2 = 0, a3 = 2, a4 = 1, a6 = 3,
and a12 = 11 cover all the integers, which means Y(x) is infinite in this case. Thus EY(x)
is infinite for x ≥ 12.



10 Shihan Kanungo

Figure 3. Graph of known values of Y (x), along with several lower bounds.

Even if we fix the small primes, as is done in Granville’s improvement to Cramér’s model,
it turns out that EY(x) is infinite for sufficiently large x. However, there is still hope to be
able to analyze Y (x) using heuristic models, especially given some results based on a new
probabilistic model published by Banks, Ford, and Tao.
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