
ARTIN’S CONJECTURE ON PRIMITIVE ROOTS

ROHAN RAMKUMAR

Abstract. Emil Artin conjectured in 1927 that any a is a primi-
tive root modulo infinitely many primes p. Although this conjecture
has not been verified for any a, in 1967, Christopher Hooley was
able to prove it conditionally, assuming the generalized Riemann
hypothesis. This paper will outline his proof of the conjecture, as-
suming some knowledge in Abstract Algebra, Galois Theory, and
Algebraic Number Theory.

1. Primitive Roots

Definition 1.1. We call a a primitive root modulo n if and only if a
generates Z×

n , the multiplicative group of the integers modulo n.

We will consider a modulo a prime p. By Euler’s theorem,

ap−1 ≡ 1 (mod p),

for all a. But, if a is a primitive root, we must have

ordp(a) =
∣∣(Z/pZ)×∣∣ = p− 1,

so

a(p−1)/q ̸≡ 1 (mod p)

for every prime q | p− 1. Thus, if a is not a primitive root mod p, then
for some prime q, both

p ≡ 1 (mod q)

and

a(p−1)/q ≡ 1 (mod p).

are true. We define the set Bq(a) to consist of primes p that satisfy
both of these conditions. Also, we let Pa denote the set of primes p
such that a is a primitive root modulo p and

Pa(x) = #{p ∈ Pa|p ≤ x}.
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In 1927, Artin conjectured that the cardinality Pa is infinite for all
a, and this claim is yet to be verified for any a unconditionally. How-
ever, assuming the generalized Riemann Hypothesis for Dedekind zeta
functions, Hooley, in 1967, proved the following result [Hoo67]:

Pa(x) = δ(a)
x

log x
+O

(
x log log x

log2 x

)
,

for a certain function δ(a), thus implying that the cardinality of Pa is
infinite. This paper will outline his proof.

2. The field Kk

Proposition 2.1. p ∈ Bq(a), if and only if p splits completely in
Kq = Q(ζq, a

1/q).

Proof. When q = 2, we have that

p ≡ 1 (mod 2)

a(p−1)/2 ≡ 1 (mod p),

or that p is an odd prime and a is a quadratic residue modulo p. Consid-
ering the field Q(

√
a), which is monogenic with minimum polynomial

x2 − a, by Dedekind-Kummer, since this polynomial only splits into
(x +

√
a)(x −

√
a) when a is a quadratic residue modulo p, this con-

dition is equivalent to p splitting completely in Q(
√
a) = Q(ζ2,

√
a),

because ζ2 = −1 is already in Q.
Otherwise, assume that q ̸= 2 is an odd prime. Consider the poly-

nomial

Xq − a.

Clearly, a1/q is a root of this polynomial, and so are ζ iqa
1/q for 0 ≤ i ≤

n − 1. Thus, Q(ζq, a
1/q) = Kq is the splitting field of Xq − a. We see

that since

NKq/Q(a
1/q) =

∏
σ∈GalK/Q

σ(a1/q)

=
n−1∏
i=0

ζ iqa
1/q

= an/q,

where n is the degree of the field extension. Since a1/q is algebraic,
this number must be an integer, so the degree is at least q. Since Xq−a
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works, the degree of Q(a1/q) over Q is q. It can be shown ([Mar18])
through calculating the discriminant of K that

[Ok : Z[a1/q]]

divides qqaq−1, hence we can apply the Dedekind-Kummer theorem on
any prime p ∤ gq. Doing so tells us that p splits completely in Q(a1/q)
if and only if

xq ≡ a (mod p)

has q solutions, which happens when p ≡ 1 (mod q), so p also splits
in the cyclotomic extension Q(ζq) and thus splits in Kq. Thus, a prime
splits in Kq if and only if it is in Bq(a). ■

Let Kk for square-free k be the compositum of all Kq with q | k.

Lemma 2.2. A prime splits in some Kq if and only if it splits in Kk

for some square-free k > 1.

Proof. This follows from the definition of completely splitting and the
definition of the compositum of fields. ■

Now define

Pa(x, k) = #{p ≤ x|p splits in Kk}

and

Na(x, y) = #{p ≤ x| for all q ≤ y, p does not split completely in Kq}.

We see that Pa(x) = Na(x, x− 1) because we cannot have

p ≡ 1 (mod q)

if q ≤ p.

Lemma 2.3. Let

Qk =
∏
q≤k

q.

Then,

Na(x, k) =
∑
l|Qk

µ(l)Pa(x, l).

Proof. We have

∑
l|Qk

µ(l)Pa(x, l) =

π(k)∑
n=0

∑
ω(l)=n

(−1)nPa(x, l),
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because the divisors of Qk are square-free. If some p splits exactly m
times throughout all q ≤ k, then it is counted(

m

1

)
−
(
m

2

)
+ · · ·+ (−1)m+1

(
m

m

)
= 1

times in the sum, so this is equal to Na(x, k). ■

3. The function δ(a)

A very important theorem in this proof is the Chebatorev Density
Theorem, which provides the density of primes that split in a certain
number field, which is exactly what we need.

Theorem 3.1. (Chebatorev Density Theorem) Let K/Q be a field ex-
tension of degree n. Then

lim
x→∞

πK(x)

π(x)
=

1

n
,

where πK counts the number of prime numbers that split in K.

For each k, the density of primes that split in Kk is thus 1/nk, where
nk is the degree of Kk. So, to count the primes that split in no Kq,
we use the principle of inclusion-exclusion, for all squarefree k, so we
would expect that

Pa(x) ∼

(
∞∑
k=1

µ(k)

nk

)
x

log x
,

since
π(x) ∼ x

log x
.

Now, let a = a0b
2, with a0 square-free, and let h be the largest integer

such that a1/h is integral.

Proposition 3.2.
∞∑
k=1

µ(k)

nk

= δ(a),

where

δ(a) =


A(a) a0 ̸≡ 1 (mod 4)(
1− µ(|a0|)

∏
q|a0
q|h

1
q−2

∏
q|a0
q∤h

1
q2−q−1

)
A(a) a0 ≡ 1 (mod 4),

and

A(a) =
∏
q∤a

(
1− 1

q(q − 1)

)∏
q|a

(
1− 1

q − 1

)
.
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First, we need a formula for nk, but before this, we need the following
Lemma:

Lemma 3.3. In a cyclic group G with order g. Then for each m | g,
there is a unique subgroup of G of order m.

Proof. Let G = ⟨a⟩, and consider the subgroups ⟨ag/m⟩ for m | g.
Clearly this group has order m, and for any ak ∈ G, we can choose
m = (g, k), so that ak ∈ ⟨ag/m⟩, hence this subgroup is unique. ■

Now, we can determine nk.

Proposition 3.4.

nk =
kϕ(k)

(h, k)ε(k)
,

where

ε(k) =

{
2 2a0 | k and a0 ≡ 1 (mod 4)

1 otherwise.

Proof. Since

deg(Q(ζk)/Q) = |Gal(Q(ζk)/Q)| = |(Z/kZ)×| = ϕ(k),

we see that

[Kk : Q] = [Kk : Q(ζk)][Q(ζk) : Q] = [Kk : Q(ζk)]ϕ(k),

so let m(k) = [Kk : Q(ζk)]. First, we will show that m(k) divides
k/(h, k). Since x = g1/h is an integer, we have that when c = xh/(h,k),
then g1/k = c1/k1 , where k1 = k/(h, k). For each

σ ∈ Gal(Kk/Q(ζk)),

define f such that
f(σ) = σ(c1/k1)ck1 ,

which is a homomorphism from Gal(Kk/Q(ζk)) to ⟨ζk1⟩. Because this
is a homomorphism, we must have m(k)|k1.

Now, let k1 = m(k)ε(k). Since k1 is square free, for each prime
q | ε(k), we have q ∤ m(k). Since q | k1 | k, the field Q(ζk, a

1/q) is
contained in Kk, hence

[Q(ζk, c
1/q) : Q(ζk)] | m(k).

However, this degree is either q or 1, and since q ∤ m(k), we must
have Q(ζk, c

1/q) = Q(ζk), so c1/q is contained in Q(ζk). This can only
occur when q = 2 because any subextension of the Galois extension
Q(ζk) must also be Galois, and this can only occur in the real field
extension Q(

√
a), with a > 0. Thus, the only possible prime factor of

ε(k) is 2. Specifically see that a = a0b
2, ε(k) = 2 when k is even and
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√
a0 is contained in Q(ζk), and otherwise ε(k) = 1. We now are left to

determine for which values of a0 the quadratic field Q(
√
a0) ⊂ Q(ζk).

By Galois correspondence, each quadratic field contained in Q(ζk)
corresponds to a subgroup of index 2 of

Gal(Q(ζk)/Q) = (Z/kZ)× =
∏
p|k

(Z/pZ)×,

by the Chinese remainder theorem and since k is square-free. When
p ̸= 2, the order of (Z/pZ)× is p − 1, which is even, so there exists a
unique subgroup H ⊂ (Z/pZ)× of order 2. Hence, the group

(Z/pZ)×/H

is the unique subgroup of index 2 inside (Z/pZ)×. Now, consider all
possible groups

G =
∏
p|k

Gp,

where Gp is a subgroup of (Z/pZ)×) such that

lcm
(
[(Z/p1Z)× : Gp1 ], [(Z/p2Z)× : Gp2 ], . . . , [(Z/pω(k)Z)× : Gpω(k)

]
)
= 2,

where ω(k) is the number of prime divisors of k. Then, each group
G has index 2 in (Z/kZ)×, so each one corresponds to a quadratic
subextension of Q(ζk). Each Gp has index 2 or 1, and since G2 must
have index 1 because (Z/2Z)× has only one element, and not all Gp

can have index 1, there are 2ω(k)−1 − 1 subgroups of (Z/kZ)×) of index
2 and thus 2ω(k)−1− 1 quadratic subextensions in Q(ζk). Now, consider
the Gauss sum

τ =
∑

a∈(Z/ℓZ)×

(
a

ℓ

)
ζaℓ ,

for a prime ℓ over Jacobi symbols. Through algebraic manipulation,
we see that

τ 2 =

(
−1

ℓ

)
ℓ.

Since τ is contained in Q(ζℓ), we have

Q

(√(
−1

ℓ

)
ℓ

)
⊂ Q(ζℓ).

By the multiplicative property of the Jacobi symbol with respect to ℓ,
we can extend this to all odd divisors of k other than 1, of which there
are 2ω(k)−1 − 1 many, so there are no other quadratic fields.
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Thus, we see that Q(
√
a0) must be of the form Q

(√(−1
ℓ

)
ℓ
)
in order

for the field to be contained inside Q(ζk). This occurs when either
a0 > 0 and

(−1
a0

)
= 1 or a0 < 0 and

(−1
|a0|

)
= −1. In both cases, we have

a0 ≡ 1 (mod 4).

Thus, we have

ε(k) =

{
2 2a0 | k and a0 ≡ 1 (mod 4)

1 otherwise.

■

Before we continue, we need another Lemma:

Lemma 3.5. For n ≥ 1, we have ϕ(n) ≥
√

n
2
.

Proof. It is known (page 267 of [HW75]) that for the largest primorial

Qk =
k∏

l=0

ql

with qk − 1 ≤ q1−δ
k ,

inf

{
ϕ(n)

n1−δ
: n ∈ N

}
=

ϕ(Qk)

Qk

.

When δ = 1
2
, we see that 2− 1 ≤

√
2 and 3− 1 >

√
3, so qk = 2, and

ϕ(n)√
n

≥ ϕ(2)√
2

=
1√
2
,

so

ϕ(n) ≥
√

n

2

for all n ≥ 1. ■

Now we can prove that

∞∑
k=1

µ(k)

nk

= δ(a).
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Proof. When a0 ̸≡ 1 (mod 4), we have

∞∑
k=1

µ(k)

nk

=
∞∑
k=1

µ(k)(h, k)ε(k)

kϕ(k)

=
∏
q

(
1 +

µ(q)(h, q)

qϕ(q)

)
=
∏
q

(
1 +

(h, q)

q(q − 1)

)
=
∏
q|h

(
1− 1

q − 1

)∏
q∤h

(
1− 1

q(q − 1)

)
= A(a)

= δ(a).

This works because
∞∑
k=1

∣∣∣∣µ(k)(h, k)kϕ(k)

∣∣∣∣ = ∞∑
k=1

(h, k)

kϕ(k)
≤

∞∑
k=1

h
√
2

k3/2

is bounded.
If a0 ≡ 1 (mod 4), then

∞∑
k=1

µ(k)(h, k)ε(k)

kϕ(k)
=
∑
2a0∤k

µ(k)(h, k)ε(k)

kϕ(k)
+ 2

∑
2a0|k

µ(k)(h, k)ε(k)

kϕ(k)

= A(a)− A(a)µ(|a0|)
∏
q|a0
q|h

1

q − 2

∏
q|a0
q∤h

1

q2 − q − 1

= δ(a)

after heavy algebraic manipulation. ■

4. Finding the Error Bound

Chebotarev’s density theorem unconditionally is not strong enough
to prove Artin’s conjecture, since it does not provide an error bound
on the asymptotic density. However, by assuming the Generalized Rie-
mann Hypothesis for a Dedekind zeta function ζK of some field K/Q,
we have the following conditional result [GM19]:

Theorem 4.1. (Explicit Chebotarev Density Theorem) If πK(x) is the
number of primes less than or equal to x that completely split in K,
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then

πK(x) =
Li(x)

[K : Q]
+O(

√
x log x) +O

(√
x log∆K

[K : Q]

)
,

assuming the Generalized Riemann Hypothesis for ζK .

Applying this result on Pa(x, k) and bounding

log |∆Kk
|

[Kk : Q]
= O(log k),

we get

Pa(x, k) =
Li(x)

nk

+O(
√
x log(kx)),

and we are finally ready to bound the Pa(x).
Now, we will define

Ma(x, y, z) = #{p ≤ x|p splits completely in any Kq, y ≤ q ≤ z}.
We see that for any ξ1,

Pa(x) ≤ Na(x, ξ1).

Also,

Na(x, ξ1)−Ma(x, ξ1, x− 1) ≤ Pa(x)

because it takes care of the overestimates of Na if ξ1 < x − 1. So,
Pa(x) = Na(x, ξ1)+O(Ma(x, ξ1, x− 1)). In order to refine an estimate
on Ma, we will split the range ξ1 to x−1 into three ranges; specifically:

Ma(x, ξ1, x− 1) ≤ Ma(x, ξ1, ξ2) +Ma(x, ξ2, ξ3) +Ma(x, ξ3, x− 1),

where, for large enough x,

ξ1 =
1

6
log x, ξ2 =

√
x log−2 x, ξ3 =

√
x log x.

First, we have

Na(x, ξ1) =
∑
l

µ(l)Pa(x, l)

=
∑
l

µ(l)

nl

Li(x) +O

(∑
l≤ξ1

√
x log x

)

=

(∑
l

µ(l)

nl

)
Li(x) +O

(
x

log2 x

)

=

(
∞∑
k=1

µ(k)

nk

)
x

log x
+O

(
x

log2 x

)
,
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from integration by parts on Li and bounding the error term∑
∃q|k
q>ξ1

µ(k)

nk

= O

(∑
q>ξ1

1

q(q − 1)

)
O

(
1

ξ1

)
,

because ∏
q≤ξ1

q ≤ 22ξ1 ≤ e2ξi ≤ x1/3.

Moving to the next term, we have

Ma(x, ξ1, ξ2) =
∑

ξ1≤q≤ξ2

Pa(x, q),

because the right side overcounts when some p ≤ x splits in more than
one Kq. Estimating this, we have∑

ξ1≤q≤ξ2

Pa(x, q) =
∑

ξ1≤q≤ξ2

(
Li(x)

nq

+O(
√
x log(qx)

)

= O

(
Li(x)

∑
q>ξ1

1

q(q − 1)

)
+O(

√
x log xπ(ξ1))

= O

(
x

log2 x

)
.

For the next term, Ma(x, ξ2, ξ3), it suffices to use the weaker condition
that counts p such that p ≡ 1 (mod q) :

Ma(x, ξ2, ξ3) ≤
∑

ξ1≤q≤ξ2

π(x; q, 1)

≤
∑

ξ2≤q≤ξ3

2x

(q − 1) log(x/q)

by the Brun-Titchmarsh theorem [MV73]. Continuing, we have∑
ξ2≤q≤ξ3

2x

(q − 1) log(x/q)
= O

(
x

log x

∑
ξ2≤q≤ξ3

1

q

)

= O

(
x

log2 x

∑
ξ2≤q≤ξ3

log q

q

)

= O

(
x

log2 x

(
ξ3
ξ2

+O(1)

))
= O

(
x log log x

log2 x

)
.
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by a theorem of Mertens [Mer74]. Finally, for the third term, we will
use the weaker condition that

a
2(p−1)

q ≡ 1 (mod p),

and since q >
√
x log x and p ≤ x, we have

p− 1

q
<

x

log x
.

So, the product of all p counted by Ma(x, ξ3, x− 1) must divide∏
m< x

log x

(a2m − 1) <
∏

m< x
log x

a2m.

Since all primes are at least 2, we have

Ma(x, ξ3, x− 1) < log2

 ∏
m< x

log x

a2m =
2 log a

log 2

∑
m< x

log x

m.


Since ∑

m<N

m =
1

2
N(N − 1) = O(N2),

we get

Ma(x, ξ3, x− 1) = O

(
x

log2 x

)
.

Combining these sums, we get

Pa(x) = δ(a)
x

log x
+O

(
x log log x

log2 x

)
,

thus proving Artin’s conjecture assuming the generalized Riemann hy-
pothesis.

5. Conclusion

Although Artin’s conjecture is yet to be verified for a specific a,
Heath-Brown proved in 1986 that at least one of 2, 3 or 5 is a primitive
root modulo infinitely many primes, and that there can only be at most
two prime values of a for which Artin’s conjecture is not true [HB86]. In
a similar vein to Artin’s Conjecture, Lang and Trotter in [LT77] conjec-
tured a similar statement for when a point on an elliptic curve generates
the entire set of points modulo p, and this conjecture was again proved
conditionally for specific curves that have complex multiplication, again
assuming the generalized Riemann hypothesis [GRM86].
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