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Abstract. In this paper we give a sketch of the proof of the Riemann-von

Mangoldt explicit formula and discuss its consequences on the distribution of

the prime numbers.

1. Introduction

In Riemann’s 1859 paper ”On the Number of Primes Less Than a Given Magni-
tude” [5], he sketched a proof for an explicit formula for the prime counting function
π(x) in terms of the zeros of the Riemann zeta function ζ(s). This formula was
later proven rigorously by von Mangolt ([4]), who reformulated it in terms of the
Chebyshev function

ψ(x) =
∑

pm≤x

log p.

In this form, the explicit formula states

ψ(x) = x−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log(1− x−2),

where ρ ranges over the non-trivial zeros of ζ. This is one of the most important
formulas in analytic number theory, giving a precise relationship between the distri-
bution of the primes and the zeros of the zeta function. It has many consequences,
notably it gives incredibly precises estimates on π(x), and implies that the prime
number theorem is equivalent to the non-vanishing of ζ(s) on the line ℜ(s) = 1.

In this paper we will give an outline of the proof of this formula, leaving out the
delicate complex analysis arguments necessary for a rigorous proof.

2. Preliminaries in Complex Analysis

In this section we give a list of definitions and theorems in complex analysis
we will need for studying the zeta function. For more details and proofs of the
theorems, see any textbook on complex analysis, for example [6].

Definition 1. Let f be a function defined on a neighborhood of a point z ∈ C.
The derivative of f at z is defined as the limit

lim
h→0

f(z + h)− f(z)

h
,

and is denoted as f ′(z), provided this limit exists,.
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While the above definition looks very similar to the definition of the derivative
of a function of a real variable, it is notable stronger; the limit above is two-

dimensional, so the quotient f(z+h)−f(z)
h must approach the same value as h → 0

along any path in the complex plane. In particular, by considering the limit as
h→ 0 along the real axis and along the imaginary axis, we obtain the following:

Theorem 2. (Cauchy Riemann Equations) Let f(x+ iy) = u(x, y)+ iv(x, y) where
u, v : R2 → R. If f is differentiable at z0 = x0 + iy0 then

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

Additionally,

f ′(z) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) =

∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0).

If the partial derivatives of u and v are continuous then the converse also holds.

Definition 3. A complex function f is said to be analytic on an open set A ⊂ C
if f is differentiable at each point z0 ∈ A. f is said to be analytic at a point z0 if
f is analytic in some open set containing z0.

Theorem 4. (Uniqueness of Analytic Continuation) Let D1 and D2 be connected
open sets with nonempty intersection, and let f1 be analytic on D1. If f2 is an
analytic function on D2 such that f1 = f2 on D1∩D2, then f2 is called an analytic
continuation of f1 to D2. Further, if such an analytic continuation of f1 to D2

exists then it is unique.

Definition 5. A function f is said to have a zero of order m at z0 if and only if,
for all z in some neighborhood of z0,

f(z) = (z − z0)
mg(z),

where g is analytic at z0 and g(z0) ̸= 0.

Definition 6. A function f has a pole of order m at z0 if and only if, for all z ̸= z0
in some neighborhood of z0,

f(z) =
g(z)

(z − z0)m
,

where g is analytic at z0 and g(z0) ̸= 0.

A pole of order 1 is also called a simple pole.

Definition 7. A function f is said to be meromorphic on an open set D if and
only if f is analytic on all of D except for possibly a set of isolated points, which
are the poles of f .

An important special case of analytic continuation is when a function f has an

analytic continuation to a function f̃ meromorphic on C. In this case it follows
from Theorem 4 that this analytic continuation of f is maximal in the sense that

for any other analytic continuation g of f , for all z such that g(z) is defined, f̃ is

also defined and g(z) = f̃ .
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Example 8. The gamma function is defined by the integral

Γ(s) =

∫ ∞

0

ts−1e−t dt,

for all ℜ(s) > 0. Further, it is analytic on this domain. It is easily verified via
integration by parts that Γ satisfies the functional equation

Γ(s+ 1) = sΓ(s)

for all ℜ(s) > 0. We can use this to construct an analytic continuation of Γ. For
all ℜ(s) > −m, and s ̸= 0,−1,−2, . . . , we define

Γ(s) =
Γ(s+m)

s(s+ 1) · · · (s+m− 1)
.

It is easy to see that this uniquely defines a function Γ everywhere except nonposi-
tive integers, and that this extended function still satisfies the functional equation
Γ(s + 1) = sΓ(s). Further, this extension is analytic because given any point
s0 ̸= 0,−1,−2, . . . we can choose some integer m < −ℜ(s0) and write

Γ(s) =
Γ(s+m)

s(s+ 1) · · · (s+m− 1)
.

This is analytic at s0 because the functions
1
s , . . . ,

1
s+m−1 , and Γ(s+m) are analytic

at s0. Further, Γ has a simple pole at each nonpositive integer −m because in some
neighborhood of −m, we can write

Γ(s) =

(
Γ(s+m+ 1)

s(s+ 1) · · · (s+m− 1)

)
1

s+m
=

g(s)

s+m
,

for all s ̸= −m, where g is analytic and nonzero at −m. Thus, we have found an
analytic continuation of Γ to a meromorphic function on C with simple poles at the
nonpositive integers. It can also be shown that Γ has no zeros on all of C (see [1]).

Definition 9. A smooth curve is a function z : [a, b] → C which has a nonzero
derivative everywhere and is injective except for possibly z(a) = z(b).

The imagine of z, denoted γ, is also sometimes called a smooth curve. Since z is
injective and differentiable in this definition, it induces one of two possible orderings
on the points of γ. A smooth curve γ along with a specified ordering is called a
directed smooth curve.

Definition 10. Let γ be a directed smooth curve and let z be a parametrization
of γ with its specified order. The contour integral of f over γ is defined to be∫

γ

f(z) dz =

∫ b

a

f(z(t))z′(t) dt.

Using the change of variables formula, it can be shown this integral is the same
for all possible choices of z. Thus, this integral only depends on the directed smooth
curve γ. If −γ denoted the same set of points as γ but with the opposite order,
then ∫

−γ

f(z) dz = −
∫
γ

f(z) dz

for any f .
A curve which is made up of piecing together finitely many directed smooth

curves γ1, . . . , γn in a way which agrees with their ordering is called a contour,
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denoted Γ. It particular, this requires that the last point of γi is the same as the
first point of γi+1. If this is the case, we write Γ = γ1 + γ2 + · · · + γn. A contour
integral over Γ is defined as∫

Γ

f(z) dz =

∫
γ1

f(z) dz + · · ·+
∫
γn

f(z) dz.

Theorem 11. Suppose f is continuous on a connected open set D and has an
antiderivative F on all of D. Then, for any contour Γ lying in D with first point a
and last point b, we have ∫

Γ

f(z) dz = F (b)− F (a).

A contour Γ whose endpoints match is called a closed contour. It is called a
simple closed contour if it has no other multiple points. If Γ is a simple closed
contour, it separated the complex plane into an interior and exterior region by
Jordan’s Theorem. A simple closed contour Γ is said to be positively oriented if its
interior is always on the left along the parameterization of Γ.

Theorem 12 (Laurent Series). Let f be analytic in the annulus r > |z − z0| < R.
Then f can be expressed as the sum of two series

f(z) =

∞∑
j=0

aj(z − z0)
j +

∞∑
j=1

a−j(z − z0)
−j ,

both series converging in the annulus, and converging uniformly in any closed sub-
annulus r > ρ1 ≤ |z − z0| ≤ ρ2 < R. The coefficients aj are given by

aj =
1

2πi

∫
Γ

f(ζ)

(ζ − z0)j+1
dζ,

where Γ is any positively oriented simple closed contour lying in the annulus and
containing z0 in its interior.

The coefficient a−1 is espeically important.

Definition 13. If f has a pole at z0, then the coefficient a−1 in the Laurent
expansion of f at z0 is called the residue of f at z0 and is denoted by

Res(f, z0) or Res(z0).

The following very important theorem relates contour integrals of a function f
to the singularities of f in the interior of Γ.

Theorem 14 (Cauchy’s Residue Theorem). If Γ is a simple closed positively ori-
ented contour and f is analytic inside and on Γ except at points z1, z2, . . . , zn inside
Γ, then ∫

Γ

f(z) dz = 2πi

n∑
j=1

Res(zj).
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3. Definition of the Riemann Zeta Function

The Riemann zeta function, denoted ζ(s), is a function of a complex variable s,
defined by the sum

ζ(s) =

∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · · ,

which converges for ℜ(s) > 1. However, this is not the important part of the zeta
function for studying prime numbers. Indeed, the distribution of the prime numbers
is related to the zeros of ζ, but there are no zeros with ℜ(s) > 1. We thus need to
find an analytic continuation for ζ. We start by writing

ζ(s)− 2

2s
ζ(s) =

(
1

1s
+

1

2s
+

1

3s
+ · · ·

)
−

(
2

2s
+

2

4s
+

2

6s
+ · · ·

)
=

1

1s
− 1

2s
+

1

3s
− 1

4s
+ · · ·

= ζa(s),

where

ζa(s) =

∞∑
n=1

(−1)n

ns
=

1

1s
− 1

2s
+

1

3s
− 1

4s
+ · · ·

is the alternating zeta function. Thus, we have

ζ(s) =

(
1− 1

2s−1

)−1

ζa(s).

The point of doing this is that ζa(s) converges for all ℜ(s) > 0 so we can use the
above equation to extend ζ(s) to the half-plane ℜ(s) > 0 except s = 1. Both ζa(s)

and
(
1− 1

2s−1

)−1
are analytic on this domain, so ζ(s) is too. Additionally, ζa is

analytic and nonzero at 1, and the function
(
1− 1

2s−1

)−1
has a simple pole at s = 1,

so it follows that ζ has a simple pole at s = 1. In fact, we can compute that

lim
s→1

(s− 1)ζ(s) =
s− 1

1− 1
2s−1

ζa(s) =
1

ln 2
ζa(1) = 1.

The zeta function can actually be extended even more. It can be shown (see [2])
that for all 0 < ℜ(s) < 1, ζ(s) satisfies the functional equation

(15) ζ(s) = 2sπs−1 sin
sπ

2
Γ(1− s)ζ(1− s)

Since we have already defined ζ(s) for ℜ(s) ≥ 1
2 , s ̸= 1 we can use this to define

ζ(s) for all s ̸= 0, 1. Actually, we can use this to define ζ(0) too. Because ζ(1− s)
has a simple pole at s = 0 and sin sπ

2 has a simple zero at s = 0, the right side of
15 is analytic on a neighborhood of 0 except for a removable singularity at s = 0.
Thus we can define ζ(s) at the limit of the right side. We thus obtain an analytic
continuation of ζ which is defined everywhere except s = 1, where it has a simple
pole.

The functional equation 15 can be used to derive many important facts about
ζ. First, we note that if s is any odd integer > 1, then Γ(1 − s) has a pole and
2sπs−1 sin sπ

2 ̸= 0. Since ζ(s) is finite it follows that ζ(1− s) = 0 for all odd integer
s > 1. Thus ζ has zeros at all the negative even integers. These are called the
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trivial zeros of ζ(s). In fact, these are all the zeros of ζ with ℜ(s) < 0. Indeed,
Suppose ρ is any zero of ζ such that ℜ(ρ) < 0. Replacing s with 1− s in 15, we get

ζ(1− s) = 21−sπs sin
(1− s)π

2
Γ(s)ζ(s).

At s = ρ, the left side is finite and nonzero so the right side must be as well. Since
ζ(ρ) = 0, this means Γ must have a pole at ρ, so ρ = −1,−2, . . . . However, if ρ

is odd then sin (1−s)π
2 has a zero at ρ which makes the right side 0. Thus, ρ is a

negative even integer. This shows that ζ(s) has no nontrivial zeros with ℜ(s) < 0.
Looking at the functional equation again, we see that this implies all nontrivial
zeros of ζ(s) lie in the strip 0 ≤ ℜ(s) ≤ 1. Lastly, we note that the functional
equation also implies that if ρ is a nontrivial root of ζ(s), then 1 − ρ is also a
nontrivial root.

4. Product Representations of the Riemann Zeta Function

To relate the Riemann zeta function to the prime numbers, we use the unique
factorization of integers to write, for ℜ(s) > 1,

∞∑
n=1

1

ns
=

∏
p prime

(
1 +

1

p2
+

1

p2s
+ · · ·

)
,

because if n = pe11 p
e2
2 · · · perr , the term 1

ns = 1
p
e1s
1

· · · 1
pers
r

occurs exactly once in the

expansion of the right side. Thus, we have

ζ(s) =
∏

p prime

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=

∏
p prime

(
1− 1

ps

)−1

,

by the sum of a geometric series. Thus, we have the following:

Theorem 16. (Euler Product of ζ(s)) For all ℜ(s) > 1,

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

.

We now want to relate this to the zeros of the zeta function. The idea is to factor
ζ like a polynomial, i.e. into terms like (1−s/ρ) where ρ is a root of ζ. This almost
works, but we need a few corrections because ζ isn’t enough “like a polynomial” to
be written exactly this way (ζ has a pole at s = 1 and grows too fast):

Theorem 17. There exists some constants a and b such that for all s ∈ C,

(s− 1)ζ(s) = ea+bs
∏
ρ

(
1− s

ρ

)
es/ρ

∞∏
n=1

(
1 +

s

2n

)
e−s/2n,

where ρ ranges over the nontrivial zeroes of ζ(s), and the product is taken in an
order such that each root ρ is paired with 1− ρ.

The reason we need to pair each ρ with 1−ρ is that the product is not absolutely
convergent; the order of the terms does matter. However, as long as we pair each
root ρ with 1 − ρ then the resulting product is absolutely convergent, so then we
don’t have to worry about the order.

The proof of this formula was sketched by Riemann [5] and later proved by
Hadamard using the Weierstrass factorization theorem. See [3].
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5. Explicit Formulas

We are now ready to prove the explicit formula for. First, we using the two
product representations of ζ, we get

(s− 1)
∏

p prime

(
1− 1

ps

)−1

= ea+bs
∏
ρ

(
1− s

ρ

)
es/ρ

∞∏
n=1

(
1 +

s

2n

)
e−s/2n.

We now take the log of both sides and then take the derivative. Since − log(1−x) =
x+ x2/2 + x3/3 + · · · , we have

log

 ∏
p prime

(
1− 1

ps

)−1
 =

∑
p prime

− log

(
1− 1

ps

)

=
∑

p prime

∞∑
m=1

1

mpms
.

Thus, the logarithmic derivative of the left side is

1

s− 1
−

∑
p prime

∞∑
m=1

log p

pms
.

On the right side, we get

b+
∑
ρ

(
1

s− ρ
+

1

ρ

)
+

∞∑
n=1

(
1

s+ 2n
− 1

2n

)
.

Equating these and rearranging, we get

(18)
∑

p prime

∞∑
m=1

log p

pms
=

1

s− 1
− b−

∑
ρ

(
1

s− ρ
+

1

ρ

)
−

∞∑
n=1

(
1

s+ 2n
− 1

2n

)
,

for all ℜ(s) > 1. In fact, both sides of this equation are just the logarithmic

derivative of ζ(s), ζ′(s)
ζ(s) . In particular, plugging in s = 0 gives b+ 1 = ζ′(0)

ζ(0) , which

can be shown to equal log(2π). Now, the idea is then to apply the Perron integral
operator:

f → lim
T→∞

1

2πi

∫ σ+iT

σ−iT

f(s)
Xs

s
ds,

where σ > 1 and X > 1. The integral here is shorthand for the contour integral
over the curve σ + it for t ∈ [−T, T ]. Some technical arguments are needed to
ensure that this is valid, but assuming we can do this and swap the integrals and
the sums, the left hand side becomes

(19)
∑

p prime

log p

∞∑
m=1

lim
T→∞

1

2πi

∫ σ+iT

σ−iT

1

s

(
X

pm

)s

ds.

To evaluate this, we use the follow formula:

Theorem 20 (Perron’s formula).

lim
T→∞

1

2πi

∫ σ+iT

σ−iT

Xs

s
ds =

{
1 if X > 1,

0 if 0 < X < 1.
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The idea behind the proof is the following. First suppose X > 1. Let CT denote
the curve from σ + iT to σ − iT along the left part of the circle with diameter on
[σ − iT, σ + iT ]. Then, if we let Γ denote the simple closed, positively oriented
contour obtained by connecting CT to [σ − iT, σ + iT ], we obtain∫

Γ

Xs

s
ds =

∫
CT

Xs

s
ds+

∫ σ+iT

σ−iT

Xs

s
ds.

By the residue theorem (Theorem 14), the integral on the left is just 2πi. Thus,

1

2πi

∫ σ+iT

σ−iT

Xs

s
ds = 1− 1

2πi

∫
CT

Xs

s
ds.

As we take T larger, we expect the integral on the right to go to zero, because Xs

becomes small when ℜ(s) is very small. Thus,

lim
T→∞

1

2πi

∫ σ+iT

σ−iT

Xs

s
ds = 1.

When 0 < X < 1, we use a similar argument. However, the integral
∫
Ct

Xs

s ds will

not go to zero if we define CT like before. Thus, we instead let CT be the right
part of the circle with diameter on [σ − iT, σ + iT ]. This time, the singularity at 0
is not inside the closed contour Γ, so the residue theorem gives

1

2πi

∫ σ+iT

σ−iT

Xs

s
ds = − 1

2πi

∫
CT

Xs

s
ds.

Taking limits, we obtain

1

2πi

∫ σ+iT

σ−iT

Xs

s
ds = 0.

Now, using this, we see that (19) is equal to∑
p prime

log p
∑

pm<X

1 =
∑

pm<X

log p = ψ(x),

where ψ(x) is the Chebyshev function. Now consider the right side of (18). Applying
the Perron operator, and assuming we can interchange the sums and integrals, we
get

lim
T→∞

1

2πi

∫ σ+iT

σ−iT

Xs

s(s− 1)
ds− b−

∑
ρ

lim
T→∞

1

2πi

∫ σ+iT

σ−iT

Xs

s(s− ρ)
ds+

1

ρ

−
∞∑

n=1

lim
T→∞

1

2πi

∫ σ+iT

σ−iT

Xs

s(s+ 2n)
ds− 1

2n
.

To evaluate these remaining we do something similar to the explanation of Theorem
20. Each of the integrals is of the form

1

2πi

∫ σ+iT

σ−iT

Xs

s(s− a)
,

where ℜ(a) ≤ 1. Turning this into an integral over a closed contour and using the
residue theorem, we get

lim
T→∞

1

2πi

∫ σ+iT

σ−iT

Xs

s(s− a)
= −1

a
+Xa,



RIEMANN’S EXPLICIT FORMULA 9

because σ > 1, assuming the integral over the added curve goes to 0. Plugging this
into the equation, we get

ψ(x) = X − 1− b−
∑
ρ

(
Xρ

ρ
− 1

ρ
− 1

ρ

)
−

∞∑
n=1

(
X−2n

−2n
+

1

2n
− 1

2n

)
= X − (b+ 1)−

∑
ρ

Xρ

ρ
− 1

2
log(1−X−2),

where we used the Taylor series for − log(1−x). As we noted before, b+1 = ζ′(0)
ζ(0) =

log(2π). Thus, we have the following:

Theorem 21 (Riemann-von Mangoldt Explicit Formula). For any X > 1, we have

ψ(X) = X −
∑
ρ

Xρ

ρ
− log(2π)− 1

2
log(1−X−2),

where ρ ranges over the non-trivial zeros of ζ.

Remember we need to pair each root ρ with 1−ρ for absolute convergence in the
sum. This formula is the a reformulation by von Mangoldt of Riemann’s original
explicit formula. While this formula is perhaps more natural, Riemann’s original
formula is more directly related to the prime counting function π(x). Riemann’s
original formula is stated in terms of his prime counting function J(x):

Definition 22. We define the function J(x) by the formula

J(x) =
∑
n≥1

∑
pn≤x

1

n
.

This function can be directly related to the prime counting function π(x) by
Möbius inversion:

Theorem 23. We have

J(x) =
∑
n≥1

π(x1/n)

n

and hence by Möbius inversion,

π(x) =
∑
n≥1

µ(n)

n
J(x1/n).

Now we can state Riemann’s original formula:

Theorem 24 (Riemann’s Original Explicit Formula). For all x > 1, we have

J(x) = li(x)−
∑
ρ

li(xρ)− log 2 +

∫ ∞

x

1

t(t2 − 1) log t
dt,

where the sum is over all nontrivial zeros of ζ, and

li(x) =

∫ x

0

1

log t
dt.

This along with Theorem 23 gives an explicit formula for π(x) in terms of the
zeros of the zeta function. When von Mangoldt originally proved Thereom 21, he
also showed that it is equivalent to this. See [4] or [2].
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6. Asymptotic Behavior of ψ(x) and the Riemann Hypothesis

The prime number theorem, which states that π(x) ∼ x
log x is well known to be

equivalent to the statement ψ(x) ∼ x. Using theorem 21, it is easy to see why this
should be true. Dividing by x and taking a limit, we find that

lim
x→∞

ψ(x)

x
= 1− lim

x→∞

∑
ρ

xρ−1

ρ
,

because the other terms go to 0. Each term xρ−1

ρ goes to zero if and only if ℜ(ρ) <
1. Thus, assuming we can interchange the limit and the sum, the prime number
theorem is equivalent to the statement that ζ(s) ̸= 0 when ℜ(s) = 1. Indeed, this
is true and is not too difficult to show. Thus, we have the following:

Theorem 25 (The Prime Number Theorem).

ψ(x) ∼ x

Unfortunately, it is not easy to justify the interchanging of the sum and limit
in the previous argument due to the fragility of the convergence of the sum. For a
rigour proof using more delicate arguments in complex analysis, and a proof of the
non-vanishing of ζ(s) on the line ℜ(s) = 1, see [2].

In Riemann’s original paper, he made a now famous conjecture which is signifi-
cantly stronger than the non-vanishing of ζ(s) on the line ℜ(s) = 1:

Conjecture 26 (Riemann Hypothesis). If ζ(s) = 0 and s ̸= −2,−4,−6, . . . , then
ℜ(s) = 1

2 .

From the explicit formula and the previous discussion, it is no surprise that if
true, this would reveal an incredible amount about the distribution of the primes.
Since the statement that ζ(s) has no zeros with real part 1 is equivalent to the
prime number theorem, π(x) ∼ x

log x , then we should expect that determining the

exact real part of every zero of the zeta function should give a much stronger bound.
Indeed, the Riemann Hypothesis has an equivalent form in terms of the asymptotic
of π(x).

First, we note that the prime number theorem is equivalent to the statement
π(x) ∼ Li(x), where

Li(x) =

∫ x

2

1

log t
dt.

This follows from the fact that Li(x) ∼ x
log x , which can by shown by integration

by parts. This formulation of the prime number theorem is often considered more
natural. We can interpret it as saying that the density of primes of size x is about

1
log x , so the number of primes less than or equal to x is the integral over this density,
i.e.

π(x) ∼
∫ x

2

1

log t
dt = Li(x).

Assuming the Riemann Hypothesis, we can get a much better bound on how close
π(x) is to Li(x). In fact, it turns out that this bound is actually equivalent to the
Riemann Hypothesis:

Theorem 27. The Riemann Hypothesis is equivalent to the bound

π(x) = Li(x) +O(
√
x log(x)).

For a proof, see [2].
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