
THE ANALYTIC CLASS NUMBER FORMULA AND SPECIAL VALUES

OF L-FUNCTIONS

NISHKARSH SINGH

Abstract. In this paper, we go through a gentle introduction to the analytic class number
formula, which is a fundamental result in number theory. We will first be going over the
algebraic and complex analytic methods which are important for understanding the class
number formula but are not assumed for any reader. Then, we will dive into our actual
topic and explore the class number formula and some remarks regarding it. Finally, we
will go through some special consequences of the class number formula regarding Dirichlet
L-functions, and how it can be used to calculate some L-functions at 1 and 0.

Mathematics is the queen of all
sciences, and number theory is
the queen of mathematics.

Carl Friedrich Gauss

1. Introduction and History

The analytic class number formula is a remarkable result in number theory which connects
the values of the Dedekind zeta function ζK to fundamental values about the number field K
like the discriminant ∆K , the class number hK , etc.

lim
s→1+

(s− 1)ζK(s) = 2r1(2π)r2
hKregK
wk

√
∆K

A class number formula is rather an ambiguous term in general which can refer to some
other formulae in different contexts, but throughout this paper, we will refer to the Dirich-
let’s analytic class number formula which was formally proven for general number fields by
Dedekind. However, the whole story is more complicated. Dedekind first proved that the
limit lims→1+(s − 1)ζK(s) exists and is equal to the given expression, but it was Landau in
1907 who proved that ζK(s) can be analytically continued to Re s ≥ 1 − 1

[K:Q] , he showed

that ζK(s) is meromorphic around 1. By this context, the formula can be seen as a residue
calculation as well. However, it is important to acknowledge that before anything, Dirichlet
had already proved the class number formula for quadratic number fields. Kummer was also
working on a similar formula, but could not generalize it for all number fields because he was
missing a precise definition for algebraic integers.
In this article, our goal is going through an introduction to the analytic class number formula.
The formula however requires a decent deal of algebraic number theory and some complex
analysis, which we will also be going through in the starting sections. From Section 2 to
Section 4, we will discuss some algebraic number theory. In Section 5, we will discuss a few
complex analytic terms, and then finally in Section 6 and Section 7 we will delve into the real
deal.

2. The Discriminant

The class number formula is by nature not entirely analytic or algebraic, but a beautiful
intersection of both fields. The formula includes some algebraic number theoretic invariants
and functions which we are going to discuss in this paper, the first one being the discriminant
of a number field.
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Definition 2.1. An algebraic number field or number field is a subfield of C with finite degree
over Q. Every number field is in the form Q[α] for some algebraic number α ∈ C. If the degree
of the irreducible polynomial (over Q) which has α as one of it’s roots is n, then

Q[α] =

{
n−1∑
k=0

akα
k; ai ∈ Q for all 1 ≤ i ≤ n− 1

}
Corollary 2.1. Any number field K has exactly [K : Q] embeddings into C. (Embeddings
are injective ring homomorphisms)

In this paper we omit the proof of this, however the idea behind this is very similar to the
field automorphisms in Galois groups. Now we will define two of the most important functions
of a number field, the trace and the norm.

Definition 2.2. For a number field K and n be [K : Q], if {σ1, σ2, . . . , σn} is the set of
embeddings from K into C, then for each α ∈ K the norm N(α) is defined as

N(α) = σ1(α)σ2(α) . . . σn(α)

Definition 2.3. For a number field K and n be [K : Q], if {σ1, σ2, . . . , σn} is the set of
embeddings from K into C, then for each α ∈ K the trace T (α) is defined as

N(α) = σ1(α) + σ2(α) + . . .+ σn(α)

Note that as every embedding is a ring homomorphism, T (α) + T (β) = T (α + β) and
N(α)N(β) = N(αβ). Also, since all n embeddings fix Q pointwise, if a ∈ Q then N(a) = ra
and T (a) = ar. Now we will define the discriminant of a n−tuple in a number field.

Definition 2.4. For a number field K with degree n and a n−tuple (a1, a2, . . . , an) where
each ai ∈ K, if {σ1, σ2, . . . , σn} is the set of embeddings from K to C, then the discriminant
of the tuple is defined as,

disc(a1, a2, . . . , an) = |σi(aj)|2 =

∣∣∣∣∣∣∣∣∣
σ1(a1) σ1(a2) · · · σ1(an)

σ2(a1)
. . .

...
...

. . .
...

σn(a1) · · · · · · σn(an)

∣∣∣∣∣∣∣∣∣

2

Lemma 2.1. disc(a1, a2, . . . , an) = |T (aiaj)|

Proof. We know that |AB| = |A||B| for matrices A and B. The proof is completed by the
equation,

[σi(aj)][σj(ai)] =

[
n∑

k=1

σk(aiaj)

]
= [T (aiaj)]

□

Lemma 2.2. disc(a1, a2, . . . , an) = 0 if a1, a2, . . . , an are linearly dependent.

We skip over the proof.

Corollary 2.2. Every basis of K/Q gives a nonzero discriminant.

Definition 2.5. A free abelian group G of rank n is a group such that it is a direct sum of n
subgroups, all of which were isomorphic to Z. Note that this also means that G is isomorphic
to the n-dimensional lattice Zn (i.e. - G ∼= Zn).

Theorem 2.1. Let ZK = A ∩K be the ring of integers of K. ZK is a free abelian group of
rank n = [K : Q]. (A is the ring of algebraic integers)

For the proof of this theorem, we would need some background.
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Corollary 2.3. If G is an abelian group of a finite rank n, then every subgroup H ⊆ G is
also an abelian group of rank ≤ n

The proof is this corollary is trivial by induction, hence skipped. It follows from this
corollary that, if there are 3 groups A,B,C such that A ⊊ B ⊊ C where A and C are both
abelian groups of rank n, this would imply that B is also an abelian group of rank n. This
is essentially the idea we are going to use in our proof. We just need to find two groups to
sandwich ZK , which are abelian groups of rank n.
Firstly, we can observe that there always exists bases of K over Q which contain entirely of
algebraic integers. In fact, they can be created by multiplying any basis by a certain integer
because for every α ∈ K there always exists an m ∈ Z such that mα ∈ A. This means that if
we take a basis {a1, a2, . . . , an} such that every ai is an algebraic integer, then we can create
a group

A = {m1a1 +m2a2 + . . .+mnan; mi ∈ Z}
Now this is clearly an abelian group of rank n, which is a subgroup of ZK . So we have
A ⊊ ZK , now we want the other half of the sandwich.

Theorem 2.2. If {α1, α2, . . . , αn} is a basis for K over Q consisting of only algebraic integers.
Then every α ∈ ZK can be written as,

m1α1 +m2α2 + . . .+mnαn

disc(α1, α2, . . . , αn)

where mi ∈ Z for all i,

Proof. Write α = x1α1+· · ·+xnαn with the xj ∈ Q. Letting σ1, . . . , σn denote the embeddings
of K in C and applying each σi to the above equation, we obtain the system

σi(α) = x1σi(α1) + · · ·+ xnσi(αn), i = 1, . . . , n.

Solving for the xj via Cramer’s rule, we find that xj =
yj
δ where δ is the determinant |σi(αj)|

and yj is obtained from δ by replacing the j-th column by σi(α). It is clear that yj and δ are
algebraic integers, and in fact δ2 = d. Thus dxj = δyj , which shows that the rational number
dxj is an algebraic integer. As we have seen, that implies dxj ∈ Z. Call it mj . □

From this theorem, we know that ZK is contained in the abelian group of rank n

1

d
A = Z

α1

d
⊕ Z

α2

d
⊕ . . .⊕ Z

αn

d

where d = disc(α1, α2, . . . , αn).

Corollary 2.4. ZK is an abelian group of rank n.

This means that ZK has a basis over Z, we call this basis the integral basis of ZK . The
discriminant of any integral basis is an invariant of a number field, so we can define the
discriminant of a number field.

Definition 2.6. If K is a number field, and ZK is its ring of integers, then the discriminant
of the ring of integers, disc(K) or disc(ZK) = disc(β1, β2, . . . βn). Where {β1, β2, . . . βn} is the
integral basis of ZK .

Example 1. Let K = Q[
√
m] where m is square-free,

disc(K) =

{
m; m ≡ 1 mod 4

4m; m ≡ 2, 3 mod 4

We omit the proof as it is is mostly just casing.

Definition 2.7. Let K be a number field, and let p ∈ K be a prime element, if (p) factors
into p1

e1p2
e2 . . . pn

en where pi are prime ideals, then
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• p is said to be ramified if there exists atleast one ei ≥ 2.
• p is said to be split if all ei = 1.
• p is said to be inert if it doesn’t split.

Proposition 2.1. If K = Q(
√
d)

• p is ramified if p|disc(K).
• p is split if p ∤ disc(K) and d is a quadratic residue modulo p.
• p is inert if p ∤ disc(K) and d is a quadratic non-residue modulo p.

3. The Class Number and some other terms

We will first start by defining some terms regarding the ring theoretic part of algebraic
number theory, which is important to analyze the further prerequisites.

Definition 3.1. A Dedekind domain D is an integral domain such that it satisfies the fol-
lowing,

• Every ideal is finitely generated;
• Every nonzero prime ideal is maximal;
• D is integrally closed in it’s field of fractions, this means that if α/β ∈ K is a root of
some monic polynomial over D, then α/β ∈ D.

One need not think too much about this definition as we aren’t going to directly use any
propositionerties of this in our paper, however the next proposition is the reason we are
including this.

Proposition 3.1. For a number field K, its ring of integers ZK is a Dedekind domain

Now we are going to introduce some terms regarding the class group.

Definition 3.2. Let R be an integral domain, a fractional ideal F of R is a finitely generated
R-submodule such that there exists a r ∈ R \ {0} so that rF ⊆ R, i.e.- is an ideal of R.

Lemma 3.1. Every fractional ideal in a Dedekind domain is invertible.

Remark 1. Lemma 3.2 is also something that characterizes Dedekind domains, it is often used
as an alternate definition in some books!

Corollary 3.1. All fractional ideals in ZK form a group FK . (More generally, for any
Dedekind domain)

Proof. The identity and closure properties are trivial, and we gaurantee the existence of an
inverse by Lemma 3.2, which completes the proof. □

Definition 3.3. A fractional ideal P is called a principal fractional ideal if there exists some
x ∈ K (more generally, the quotient field of R) such that P = ZKx.

Definition 3.4. The Ideal Class Group ClK is defined as the quotient group FK \ PK

Definition 3.5. The class number hK is defined as the order of the ideal class group |ClK |.
This in a way is a measure of how far ZK is from being a UFD (unique factorization domain)
as hK = 1 when ZK is a UFD.

Corollary 3.2. The number of roots of unity in K is denoted by wK , therefore it is

wK =


3 K = Q(ι)

6 K = Q(
√
−3)

2 otherwise
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4. The Regulator

The regulator is the last, and perhaps the most challenging invariant we are going to deal
with in this paper. We have till now included the nature of the structure of the field, the
structure of the ring of integers, now we are going to see the structure of the units in the field.

Definition 4.1. All the units in a number field form a group, called the Unit Group Z∗
K .

Definition 4.2. The fundamental unit of a number field K is the generator for all units in
the unit group when the group has rank 1, i.e. - it is a real quadratic field, imaginary cubic
field, or a totally imaginary quartic field.

We will unfortunately not be able to go through the formal definition of a regulator as that
would require a heavy background on the geometric methods in algebraic number theory and
would take a lot of time so we will rather do an intuitive definition and go through it’s values
for different cases.

Dirichlet’s unit theorem says the unit group is actually isomorphic to Zr1+r2−1 × µK where
µK is the group of the roots of unity in K and r1 and r2 are the number of real and complex
embeddings of K into C. Using this, we can map every unit to Rr1+r2 , this gives us some vec-
tors, which in turn form a parallelepiped (a complicated multidimensional shape). When we
calculate the volume of this, we are essentially calculating the size of Z∗

K , this is the regulator
RegK .

Proposition 4.1. RegK is 1 when K is an imaginary quadratic field, and it is the logarithm
of its fundamental unit log ϵ when it’s real quadratic, imaginary cubic, or totally imaginary
quartic.

5. A pinch of complex analysis

In this section, we are going to talk about complex analysis which is an important part of
the class number formula. We are going to be relatively non-rigorous here as it would not
make sense to punch down a semester worth of complex analysis into 2 or 3 pages, rather
we are only going to discuss the terms which will be useful to us so that we can understand
what’s going on in our main theorem.

Definition 5.1. Let U be an open set and let f : U → C be a function. We say that f is
differentiable (or complex differentiable) at some z ∈ U if the limit

lim
z′→z

f(z)− f(z′)

z − z′

exists.

Definition 5.2. Let U be an open set and let f ;U → C be a function. We say that f is
holomorphic if f is complex differentiable at all points in U .

Definition 5.3. A complex function f is said to have a singularity at z0 if f fails to be
analytic at some point in every neighbourhood of z0.

There are two types of singularities, isolated and non isolated, and there are further divisions
as well. But we are going to only look at one type of isolated singularity, known as a simple
pole.

Definition 5.4. Let f : U → C be a complex function, f is said to have a simple pole at z0
if 1

f is holomorphic in some neighbourhood of z0 and has a zero at z0.

Definition 5.5. Let U be an open set, a complex function f : U → C is said to be mero-
morphic if f is holomorphic for every point in U except a set of isolated points which are
poles.
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In complex analysis, we have something like an extension to the general Taylor expansion,
it’s called a Laurent expansion.

Corollary 5.1. Every holomorphic function f can be written as Laurent expansion centered
at z0, which means it can be written as,

f(z) =
∞∑
i=0

ai(z − z0)
i +

∞∑
j=1

bj
(z − z0)j

It would be out of our scope to prove this. ai and bj are determined by a complex integral,
bj becomes 0 for every j ≥ 2 in the case of a simple pole at z0.

We, moreover, did all these definitions for understanding one important concept in complex
analysis which occurs in the class number formula, the residue. However, obviously residues,
in general, are not so simple. Luckily, we have to only deal with residues at a simple pole
in our formula, and that is what we will be defining in this paper. Residue by essence is a
complex number which describes the intensity of a singularity. It is propositionortional to
a line integral which goes around the singularity. We will not be going through the formal
definition of a residue as it would require a lot of theory, but we will be going through a
glimpse of what is the expression for the residue at a simple pole and why it is so. If f is a
meromorphic function with a simple pole at z0 then we know that,

f(z) =

∞∑
i=0

ai(z − z0)
i +

∞∑
j=1

bj
(z − z0)j

=

∞∑
i=0

ai(z − z0)
i +

b1
(z − z0)

Here b1 is the residue (by the definition of the coefficients),

(z − z0)f(z) = (z − z0)
∞∑
i=0

ai(z − z0)
i + b1

If we take limit z → z0 then,

Resz0(f) = lim
z→z0

(z − z0)f(z)

6. The Class Number Formula

We are finally now arriving at the main result of this paper, the class number formula. We
will define a few terms and then move on to our formula.

Definition 6.1. Let K be a number field and let ZK be its ring of integers. If a is a non-zero
integral ideal from ZK , then the absolute norm of a is defined as

N (a) = [ZK : a]

or the number of elements in the quotient ZK/a.

Corollary 6.1. The absolute norm is completely multiplicative, which means

N (a)N (b) = N (ab)

We skip over the proof.

Definition 6.2. For a number field K and its ring of integers ZK , the Dedekind zeta function
ζK is defined as,

ζK(s) =
∑
a⊆ZK

1

(N (a))s

where a runs through all the nonzero integral ideals of ZK .
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This is an extension of the Riemann zeta function, its easy to observe that ζQ(s) = ζ(s).
There is also something analogous to the euler product for this zeta function,

Corollary 6.2.

ζK(s) =
∏

p⊆ZK

(
1− 1

(N (p))s

)−1

where p runs through all the prime nonzero ideals of ZK .

Now we can state the analytic class number formula,

Theorem 6.1. Let K be a number field and ZK its ring of integers, ζK(s) has an analytic
continuation in Rs > 1− 1

n , which is meromorphic with a simple pole at 1 with residue,

lim
s→1

(s− 1)ζK(s) = 2r1(2π)r2
hKRegK√
disc(K)wK

where r1 and r2 are the number of real and complex places in K respectively, hK is the class
number, RegK is the regulator, disc(K) is the discriminant and wK is the number of roots of
unity in the number field K.

The proof of the theorem is out of the scope of this paper as it is very lengthy. However,
we will discuss some analytic applications of this.

Remark 2. In the class number formula, the left hand side can be calculated to any accuracy
by expanding the zeta function numerically. The right hand side is also easy to calculate
mostly, except the class number itself which is usually the hardest to calculate. This is the
reason why the formula is named the ’class number’ formula.

7. Applications to the theory of L-functions

One of the most special propositionerties of the Dedekind zeta function is that it can be
factored into L-functions. This is a fact linked to one of the most important conjectures in
number theory, Artin’s conjecture on L-functions. We will first start proving this for quadratic
fields.

Lemma 7.1. Let K = Q(
√
m) where m is square-free, we have

ζK(s) = L(s, χ)ζ(s)

where χ is the Legendre symbol modulo disc(K).

Proof. We compare compare Euler products, for L(s, χ)ζ(s) we know the Euler factor at some
p is (1− 1/ps)−1(1− χ(p)/ps)−1. We know that,

χ(p) =


1; p is a quadratic residue

0; p|disc(K)

−1; p is not a quadratic residue

=


1; p splits

0; p ramifies

−1; p is inert

which means that the Euler factor is going to be (1 − 1/ps)−2 when p splits, (1 − 1/ps)−1

when p ramifies, and (1− 1/p2s)−1 if p is inert. Now for ζK(s),

ζK(s) =
∏
p

(
1− 1

N (p)s

)−1

=
∏
p

∏
p|pZK

(
1− 1

N (p)s

)−1

So the Euler factor at p is
∏

p|pZK
(1−N (p)−s)

−1
, which is also (1 − 1/ps)−2 when p splits,

(1 − 1/ps)−1 when p ramifies, and (1 − 1/p2s)−1 if p is inert. As the Euler factors are same
and ranging through the same primes, our lemma is true. □
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Example 2. Now it is possible to calculate class numbers of specific quadratic fields like, say
Q(−3),

L(1, χ)
3
√
3

π
= hK

Note that L(1, χ) is numerically computable easily, we can calculate it and it is ≈ 0.596. As
3
√
3/π ≈ 1.65, we know that hK = 1. Note that this also tells us that Q(−3) is a unique

factorization domain!
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