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Carmichael Numbers

1. Introduction

Consider the following well-known theorem:

Theorem (Fermat’s Little Theorem): Let p be a prime. For all a = 0 (mod p), we have

a?P~! =1 (modp).

What happens if we assume that p isn’t prime? If p isn’t prime but satisfies the theorem above, then p
is called a Carmichael number. In this paper, we will be exploring Carmichael numbers, some of their
properties, and most importantly, how they are distributed.

2. Basics

Let’s define what a Carmichael number is again.

Definition (Carmichael Number): A composite integer n is called a Carmichael number if for
all a such that ged(a,n) = 1 we have

aP~! =1 (modp).

Example: Here are a few examples of Carmichael numbers:

561,1105,1729

Clearly going through every single possible a and checking the condition above would be an innefi-
cient way to determine if a number is a Carmichael number or not. The following criterion gives a
much faster way to find out.
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Theorem (Korselt’s Criterion): A composite number n is a Carmichael number if and only if
+ n is squarefree,
« for every prime p dividing n, we also have (p — 1) | (n — 1).

Proof: Assume n is a Carmichael number. We will first show that n is squarefree via contradic-
tion. Suppose some prime p divides n more than once. Thus we can write n = p*n’ where k =
v,(n) > 2. By the Chinese Remainder Theorem, there exists a such that

a=1+p(modp*) and a=1(modn’).

These two equations imply that ged(a, n) = 1, so by the definition of Carmichael numbers we
have

a™ ! =1 (modn).

This means a™ ! — 1 = nm for some integer m. Taking both sides mod p? yields
(14p)" " =1 (modp?).
Using the binomial theorem on the left side gets rid of all terms except the first two, so we have
1+ (n—1)p =1 (modp?).

Since p? divides n, we have

1 —p =1 (modp?),
which is impossible, so n must be squarefree.

Next we show (p — 1) | (n — 1) for each prime p | n. Since n is squarefree, p and = are relatively
prime. Pick any b such that b is a primitive root of p. By the Chinese Remainder Theorem, there
exists an a such that

a=b(modp) and azl(modﬁ)
p

These two equations imply ged(a,n) = 1, so we have
a1 =1 (modn).
Reducing mod p yields
b"1 =1 (modp).
Since ord,,(b) = p — 1, we must have (p — 1) | (n —1).

Now we show the other direction. Assume n composite, squarefree, and (p — 1) | (n — 1) for all
primes p dividing n. If ged(a, n) = 1, then for each prime p | n we have ged(a,p) = 1, so

a?P~! =1 (modp).
Since p — 1 is a factor of n — 1, we have

a” ! =1 (modp).
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Since this holds for all primes dividing n, we can deduce
a™ 1 =1 (modn),

so n is a Carmichael number. [ ]

Here is a way to construct Carmichael numbers.

Example: Let n = (6k + 1)(12k + 1)(18k + 1) where k£ > 1. Suppose k is chosen such that
6k + 1,12k + 1, and 18k + 1 are all prime. First it’s clear that n is squarefree. Now exapand n
to get

n = 1296k> + 396k? + 36k + 1.

Note that we have 6k | (n — 1), 12k | (n — 1), and 18k | (n — 1). Thus n satisfies Korselt’s
criterion, so it is Carmichael number. Similarly, if k£ is chosen such that 6k + 1,12k +

1,18k + 1,and 36k + 1 are all primes, then n = n = (6k + 1)(12k + 1)(18k + 1)(36k + 1) is
a Carmichael number. However, not every Carmichael number is of one of these forms. For ex-
ample, 561 = 3 - 11 - 17, which does not fall into one of these categories.

Next we deduce some properties that Carmichael numbers must have.

Proposition: Every Carmichael number 7 is odd, has at least three different prime factors, and
every prime factor of n is less than /n.

Proof: Suppose n is even. Then by Korselt’s Criterion we need (p — 1) | (n — 1) for all primes
dividing n. However, if p is an odd prime, then p — 1 is even, while n — 1 is odd, which means
(p—1) | (n — 1) can’t hold. Thus, n must be odd.

Now suppose n = pq has two prime factors. By Korselt’s Criterion, we have (p — 1) | (pg — 1).
This implies

pq—1
p—1

is an integer. We can rewrite this as

pg—q+q—1 qg—1
=q+ .
p—1 p—1

Thus we need (p — 1) | (¢ — 1). Using the same process, we also have (¢ — 1) | (p — 1). Both of
these imply p — 1 = ¢ — 1, but this is impossible. Thus, n must have at least three prime factors.

Now we show that every prime factor is less than /n. If p is a prime factor, then we have

n—l_P@)—l_@—IN@+§—1ZE+3—1

)

p—1  p-—1 p—1 p p—1
so(p—1)| (% — 1). Thus p < 2. Note that is the inequality is not strict then n = p?, which is
impossible. Thus we obtain p < y/n, as desired. [ |
(1]
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3. Distribution

Now we’ll discuss the distribution of Carmichael numbers. The first obvious question we should ask:
are there infinitely many Carmichael numbers? The answer is yes.

Theorem (Alford, Granville, Pomerance): Let C(z) denote the number of Carmichael numbers
up to z. Then

C(z) > 7

for sufficiently large x.

The proof of this theorem is quite involved, so we won’t delve into it here, but a full proof can be found
at [2].

Another reasonable question that can be asked is how many Carmichael numbers with £ factors are
there? Letting C},(z) denoting the number of Carmichael numbers up to = with exactly k prime fac-
tors, Granville conjectured that

Cy(z) = zrtor®),

In fact, we can get a bound on C5(x) that is quite close to this value.

Theorem (Balasubrmanian, Nagaraj): Let C5(x) denote the number of Carmichael numbers up
to z with exactly 3 prime factors. Then

Cs(r) = giito)

for sufficiently large x.

Proof: Let n be a Carmichael number with three prime factors 2 < p < ¢ < r. By Korselt’s Cri-
terion, we have

n—1=0(modp—1),
n—1=0(modqg—1),
n—1=0(modr—1).

Let g =ged(p— 1,9 — 1,7 — 1). Define a, b, c as p—;l,%,%
c. Note thatn —1 =0 (modp — 1) = n—1 =0 (mod ga) = n

left side in terms of g, a, b, c yields

respectively. Thus a < b <
— 1 =0 (mod a). Writing the

(ga+1)(gb+1)(gec+1)—1=(gb+1)(gc+1) —1=g(gbc+ b+ c) =0 (moda).

This implies gbc + b+ ¢ =0 (moda). Similarly, gab+ a+b=0 (modc) and gac+a+
¢ (mod b). Combining these using Chinese Remainder Theomrem yields

g(ab+bc+ca) +a+ b+ c =0 (modabc).
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Note that gcd(ab + bc + ca, abc) = 1. Thus, given a, b, ¢, g is uniquely determined mod abc.

Let N be the number of quadruples (g, a, b, ¢) that satisfy the above congruence and such that
g3abc < z.Then C3(x) < N. We write N = N; + N, + N5 where N, is the number of quadru-
ples with g > abc, N, is the number of quadruples with G < g < abc where G = 211, and N,
is the number of quadruples with ¢ < G and g < abe.

First we estimate N, . If (a, b, c) is fixed, then the number of g with g3abc < z that are in partic-
1 1
x3

. Thus we have
)3

ular residue class mod abc is at most (-2-)° /(abc) =

1 Cé%}%
Ny= > < (32 :

4
a<b<c (CbbC) 3

The cubed ¢ comes from considering just summing over one variable and then multiplying each
sum together, and the division by 6 comes from considering permutations. Thus N; = O(:c%).

Next we estimate N,.If (a, b, ¢) is fixed, then there is at most one g that satisfies our congruence
and that is less than abc. If ¢ > G and g3abc < z, then abc < g% < % Thus N, is at most the

1
number of triples (a, b, ¢) witha < b < ¢ and abe < % Note that a can be at most (%) 3 under
1

T T

. Thus we have

these conditions, b is at most ( )5, and c is at most

aG? e
M< DX 2. 1
1 1 p<e<—=
1<a<%y  a<b<(-Z3)° abG?

<Y Y e T ()e((5))

1 1
1<a<Z a<b<( 2 )

1§a<%
T T3 T T o 1 5.
< e (1 + log (E)) log(a) < @log T = 63:14 log” .

Thus N, = O(a:%“’(l)).

Finally we estimate N5. Finding the estimate for N5 is much more involved, so if the reader is
interested in reading the proof'in its entirety, we leave a leave reference to the original paper [3].
However, we will outline the beginning of the estimate. In this case ¢ < GG and g < abc where
G = zit. Let g(ab + bc + ca) + a + b+ ¢ = Aabc where ) is a positive integer. Then

(Aa—g)bc =ga(b+c)+a+b+ec.

Note that 6gbc > g(ab+ bc + ca) + a + b+ ¢ = Aabe, so Aa < 6g. We break the range for
g,a,basG; < g <2G;,A<a<2A, B <b<2B. Weconsider two cases: B > Agziiand B <
Az, From there the paper considers both cases separately, and both have O(:L'Ti“(l)) choices
for A\, g,a,b,c.

Thus, overall we have
N=N,+N,+ N, = o(x%) T o(ﬁﬂ(l)) + o(x%w(l)) — o(x%wu)),

as desired. [ |
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