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Carmichael Numbers

1. Introduction

Consider the following well-known theorem:

Theorem (Fermat’s Little Theorem):  Let 𝑝 be a prime. For all 𝑎 ≡ 0 (mod 𝑝), we have

𝑎𝑝−1 ≡ 1 (mod 𝑝).

What happens if we assume that 𝑝 isn’t prime? If 𝑝 isn’t prime but satisfies the theorem above, then 𝑝
is called a Carmichael number. In this paper, we will be exploring Carmichael numbers, some of their
properties, and most importantly, how they are distributed.

2. Basics

Let’s define what a Carmichael number is again.

Definition (Carmichael Number) :  A composite integer 𝑛 is called a Carmichael number if for
all 𝑎 such that gcd(𝑎, 𝑛) = 1 we have

𝑎𝑝−1 ≡ 1 (mod 𝑝).

Example :  Here are a few examples of Carmichael numbers:

561, 1105, 1729

Clearly going through every single possible 𝑎 and checking the condition above would be an innefi-
cient way to determine if a number is a Carmichael number or not. The following criterion gives a
much faster way to find out.
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Theorem (Korselt’s Criterion) :  A composite number 𝑛 is a Carmichael number if and only if
• 𝑛 is squarefree,
• for every prime 𝑝 dividing 𝑛, we also have (𝑝 − 1) ∣ (𝑛 − 1).

Proof :  Assume 𝑛 is a Carmichael number. We will first show that 𝑛 is squarefree via contradic-
tion. Suppose some prime 𝑝 divides 𝑛 more than once. Thus we can write 𝑛 = 𝑝𝑘𝑛′ where 𝑘 =
𝜈𝑝(𝑛) ≥ 2. By the Chinese Remainder Theorem, there exists 𝑎 such that

𝑎 ≡ 1 + 𝑝 (mod 𝑝𝑘) and 𝑎 ≡ 1 (mod𝑛′).

These two equations imply that gcd(𝑎, 𝑛) = 1, so by the definition of Carmichael numbers we
have

𝑎𝑛−1 ≡ 1 (mod𝑛).

This means 𝑎𝑛−1 − 1 = 𝑛𝑚 for some integer 𝑚. Taking both sides mod𝑝2 yields

(1 + 𝑝)𝑛−1 ≡ 1 (mod 𝑝2).

Using the binomial theorem on the left side gets rid of all terms except the first two, so we have

1 + (𝑛 − 1)𝑝 ≡ 1 (mod 𝑝2).

Since 𝑝2 divides 𝑛, we have

1 − 𝑝 ≡ 1 (mod 𝑝2),

which is impossible, so 𝑛 must be squarefree.

Next we show (𝑝 − 1) ∣ (𝑛 − 1) for each prime 𝑝 ∣ 𝑛. Since 𝑛 is squarefree, 𝑝 and 𝑛𝑝  are relatively
prime. Pick any 𝑏 such that 𝑏 is a primitive root of 𝑝. By the Chinese Remainder Theorem, there
exists an 𝑎 such that

𝑎 ≡ 𝑏 (mod 𝑝) and 𝑎 ≡ 1 (mod
𝑛
𝑝
).

These two equations imply gcd(𝑎, 𝑛) = 1, so we have

𝑎𝑛−1 ≡ 1 (mod𝑛).

Reducing mod 𝑝 yields

𝑏𝑛−1 ≡ 1 (mod 𝑝).

Since ord𝑝(𝑏) = 𝑝 − 1, we must have (𝑝 − 1) ∣ (𝑛 − 1).

Now we show the other direction. Assume 𝑛 composite, squarefree, and (𝑝 − 1) ∣ (𝑛 − 1) for all
primes 𝑝 dividing 𝑛. If gcd(𝑎, 𝑛) = 1, then for each prime 𝑝 ∣ 𝑛 we have gcd(𝑎, 𝑝) = 1, so

𝑎𝑝−1 ≡ 1 (mod 𝑝).

Since 𝑝 − 1 is a factor of 𝑛 − 1, we have

𝑎𝑛−1 ≡ 1 (mod 𝑝).
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Since this holds for all primes dividing 𝑛, we can deduce

𝑎𝑛−1 ≡ 1 (mod𝑛),

so 𝑛 is a Carmichael number. ∎

Here is a way to construct Carmichael numbers.

Example :  Let 𝑛 = (6𝑘 + 1)(12𝑘 + 1)(18𝑘 + 1) where 𝑘 ≥ 1. Suppose 𝑘 is chosen such that
6𝑘 + 1, 12𝑘 + 1, and 18𝑘 + 1 are all prime. First it’s clear that 𝑛 is squarefree. Now exapand 𝑛
to get

𝑛 = 1296𝑘3 + 396𝑘2 + 36𝑘 + 1.

Note that we have 6𝑘 ∣ (𝑛 − 1), 12𝑘 ∣ (𝑛 − 1), and 18𝑘 ∣ (𝑛 − 1). Thus 𝑛 satisfies Korselt’s
criterion, so it is Carmichael number. Similarly, if 𝑘 is chosen such that 6𝑘 + 1, 12𝑘 +
1, 18𝑘 + 1, and 36𝑘 + 1 are all primes, then 𝑛 = 𝑛 = (6𝑘 + 1)(12𝑘 + 1)(18𝑘 + 1)(36𝑘 + 1) is
a Carmichael number. However, not every Carmichael number is of one of these forms. For ex-
ample, 561 = 3 · 11 · 17, which does not fall into one of these categories.

Next we deduce some properties that Carmichael numbers must have.

Proposition :  Every Carmichael number 𝑛 is odd, has at least three different prime factors, and
every prime factor of 𝑛 is less than 

√
𝑛.

Proof :  Suppose 𝑛 is even. Then by Korselt’s Criterion we need (𝑝 − 1) ∣ (𝑛 − 1) for all primes
dividing 𝑛. However, if 𝑝 is an odd prime, then 𝑝 − 1 is even, while 𝑛 − 1 is odd, which means
(𝑝 − 1) ∣ (𝑛 − 1) can’t hold. Thus, 𝑛 must be odd.

Now suppose 𝑛 = 𝑝𝑞 has two prime factors. By Korselt’s Criterion, we have (𝑝 − 1) ∣ (𝑝𝑞 − 1).
This implies

𝑝𝑞 − 1
𝑝 − 1

is an integer. We can rewrite this as

𝑝𝑞 − 𝑞 + 𝑞 − 1
𝑝 − 1

= 𝑞 +
𝑞 − 1
𝑝 − 1

.

Thus we need (𝑝 − 1) ∣ (𝑞 − 1). Using the same process, we also have (𝑞 − 1) ∣ (𝑝 − 1). Both of
these imply 𝑝 − 1 = 𝑞 − 1, but this is impossible. Thus, 𝑛 must have at least three prime factors.

Now we show that every prime factor is less than 
√
𝑛. If 𝑝 is a prime factor, then we have

𝑛 − 1
𝑝 − 1

=
𝑝(𝑛𝑝) − 1
𝑝 − 1

=
(𝑝 − 1)(𝑛𝑝) +

𝑛
𝑝 − 1

𝑝 − 1
=
𝑛
𝑝
+

𝑛
𝑝 − 1
𝑝 − 1

,

so (𝑝 − 1) ∣ (𝑛𝑝 − 1). Thus 𝑝 ≤ 𝑛
𝑝 . Note that is the inequality is not strict then 𝑛 = 𝑝2, which is

impossible. Thus we obtain 𝑝 <
√
𝑛, as desired. ∎

[1]
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3. Distribution

Now we’ll discuss the distribution of Carmichael numbers. The first obvious question we should ask:
are there infinitely many Carmichael numbers? The answer is yes.

Theorem (Alford, Granville, Pomerance) :  Let 𝐶(𝑥) denote the number of Carmichael numbers
up to 𝑥. Then

𝐶(𝑥) > 𝑥27

for sufficiently large 𝑥.

The proof of this theorem is quite involved, so we won’t delve into it here, but a full proof can be found
at [2].

Another reasonable question that can be asked is how many Carmichael numbers with 𝑘 factors are
there? Letting 𝐶𝑘(𝑥) denoting the number of Carmichael numbers up to 𝑥 with exactly 𝑘 prime fac-
tors, Granville conjectured that

𝐶𝑘(𝑥) = 𝑥
1
𝑘+𝑜𝑘(𝑥).

In fact, we can get a bound on 𝐶3(𝑥) that is quite close to this value.

Theorem (Balasubrmanian, Nagaraj) :  Let 𝐶3(𝑥) denote the number of Carmichael numbers up
to 𝑥 with exactly 3 prime factors. Then

𝐶3(𝑥) = 𝑥
5
14+𝑜(1)

for sufficiently large 𝑥.

Proof :  Let 𝑛 be a Carmichael number with three prime factors 2 < 𝑝 < 𝑞 < 𝑟. By Korselt’s Cri-
terion, we have

𝑛 − 1 ≡ 0 (mod 𝑝 − 1),
𝑛 − 1 ≡ 0 (mod 𝑞 − 1),
𝑛 − 1 ≡ 0 (mod 𝑟 − 1).

Let 𝑔 = gcd(𝑝 − 1, 𝑞 − 1, 𝑟 − 1). Define 𝑎, 𝑏, 𝑐 as 𝑝−1𝑔 ,
𝑞−1
𝑔 ,

𝑟−1
𝑔  respectively. Thus 𝑎 < 𝑏 <

𝑐. Note that 𝑛 − 1 ≡ 0 (mod 𝑝 − 1) ⇒ 𝑛 − 1 ≡ 0 (mod 𝑔𝑎) ⇒ 𝑛 − 1 ≡ 0 (mod 𝑎). Writing the
left side in terms of 𝑔, 𝑎, 𝑏, 𝑐 yields

(𝑔𝑎 + 1)(𝑔𝑏 + 1)(𝑔𝑐 + 1) − 1 ≡ (𝑔𝑏 + 1)(𝑔𝑐 + 1) − 1 = 𝑔(𝑔𝑏𝑐 + 𝑏 + 𝑐) ≡ 0 (mod 𝑎).

This implies 𝑔𝑏𝑐 + 𝑏 + 𝑐 ≡ 0 (mod 𝑎). Similarly, 𝑔𝑎𝑏 + 𝑎 + 𝑏 ≡ 0 (mod 𝑐) and 𝑔𝑎𝑐 + 𝑎 +
𝑐 (mod 𝑏). Combining these using Chinese Remainder Theomrem yields

𝑔(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) + 𝑎 + 𝑏 + 𝑐 ≡ 0 (mod 𝑎𝑏𝑐).

4



Nikhil Reddy Carmichael Numbers

Note that gcd(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎, 𝑎𝑏𝑐) = 1. Thus, given 𝑎, 𝑏, 𝑐, 𝑔 is uniquely determined mod 𝑎𝑏𝑐.

Let 𝑁  be the number of quadruples (𝑔, 𝑎, 𝑏, 𝑐) that satisfy the above congruence and such that
𝑔3𝑎𝑏𝑐 ≤ 𝑥. Then 𝐶3(𝑥) ≤ 𝑁 . We write 𝑁 = 𝑁1 +𝑁2 +𝑁3 where 𝑁1 is the number of quadru-
ples with 𝑔 > 𝑎𝑏𝑐, 𝑁2 is the number of quadruples with 𝐺 < 𝑔 ≤ 𝑎𝑏𝑐 where 𝐺 = 𝑥 3

14 , and 𝑁3
is the number of quadruples with 𝑔 ≤ 𝐺 and 𝑔 ≤ 𝑎𝑏𝑐.

First we estimate 𝑁1. If (𝑎, 𝑏, 𝑐) is fixed, then the number of 𝑔 with 𝑔3𝑎𝑏𝑐 ≤ 𝑥 that are in partic-
ular residue class mod 𝑎𝑏𝑐 is at most ( 𝑥

𝑎𝑏𝑐)
1
3/(𝑎𝑏𝑐) = 𝑥

1
3

(𝑎𝑏𝑐)
4
3

. Thus we have

𝑁1 = ∑
𝑎<𝑏<𝑐

𝑥13

(𝑎𝑏𝑐)
4
3
<
𝜁(43)

3𝑥13
6

.

The cubed 𝜁 comes from considering just summing over one variable and then multiplying each
sum together, and the division by 6 comes from considering permutations. Thus 𝑁1 = 𝑂(𝑥

1
3).

Next we estimate 𝑁2. If (𝑎, 𝑏, 𝑐) is fixed, then there is at most one 𝑔 that satisfies our congruence
and that is less than 𝑎𝑏𝑐. If 𝑔 > 𝐺 and 𝑔3𝑎𝑏𝑐 ≤ 𝑥, then 𝑎𝑏𝑐 ≤ 𝑥

𝑔3 <
𝑥
𝐺3 . Thus 𝑁2 is at most the

number of triples (𝑎, 𝑏, 𝑐) with 𝑎 < 𝑏 < 𝑐 and 𝑎𝑏𝑐 ≤ 𝑥
𝐺3 . Note that 𝑎 can be at most ( 𝑥𝐺3 )

1
3  under

these conditions, 𝑏 is at most ( 𝑥
𝑎𝐺3 )

1
2 , and 𝑐 is at most 𝑥

𝑎𝑏𝐺3 . Thus we have

𝑁2 ≤ ∑

1≤𝑎<𝑥
1
3
𝐺

∑

𝑎<𝑏<( 𝑥
𝑎𝐺3

)
1
2

∑
𝑏<𝑐≤ 𝑥

𝑎𝑏𝐺3

1

< ∑

1≤𝑎<𝑥
1
3
𝐺

∑

𝑎<𝑏<( 𝑥
𝑎𝐺3

)
1
2

𝑥
𝑎𝑏𝐺3

< ∑

1≤𝑎<𝑥
1
3
𝐺

(
𝑥
𝑎𝐺3

) log((
𝑥
𝑎𝐺3

)
1
2
)

<
𝑥
2𝐺3

(1 + log(
𝑥13
𝐺
))log(

𝑥
𝐺3
) <

𝑥
6𝐺3

log2 𝑥 =
1
6
𝑥 5
14 log2 𝑥.

Thus 𝑁2 = 𝑂(𝑥
5
14+𝑜(1)).

Finally we estimate 𝑁3. Finding the estimate for 𝑁3 is much more involved, so if the reader is
interested in reading the proof in its entirety, we leave a leave reference to the original paper [3].
However, we will outline the beginning of the estimate. In this case 𝑔 ≤ 𝐺 and 𝑔 ≤ 𝑎𝑏𝑐 where
𝐺 = 𝑥 3

14 . Let 𝑔(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) + 𝑎 + 𝑏 + 𝑐 = 𝜆𝑎𝑏𝑐 where 𝜆 is a positive integer. Then

(𝜆𝑎 − 𝑔)𝑏𝑐 = 𝑔𝑎(𝑏 + 𝑐) + 𝑎 + 𝑏 + 𝑐.

Note that 6𝑔𝑏𝑐 ≥ 𝑔(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) + 𝑎 + 𝑏 + 𝑐 = 𝜆𝑎𝑏𝑐, so 𝜆𝑎 ≤ 6𝑔. We break the range for
𝑔, 𝑎, 𝑏 as 𝐺1 ≤ 𝑔 ≤ 2𝐺1, 𝐴 ≤ 𝑎 ≤ 2𝐴, 𝐵 ≤ 𝑏 ≤ 2𝐵. We consider two cases: 𝐵 ≥ 𝐴𝑥 1

14  and 𝐵 <
𝐴𝑥 1

14 . From there the paper considers both cases separately, and both have 𝑂(𝑥 5
14+𝑜(1)) choices

for 𝜆, 𝑔, 𝑎, 𝑏, 𝑐.

Thus, overall we have

𝑁 = 𝑁1 +𝑁2 +𝑁3 = 𝑂(𝑥
1
3) + 𝑂(𝑥 5

14+𝑜(1)) + 𝑂(𝑥 5
14+𝑜(1)) = 𝑂(𝑥 5

14+𝑜(1)),

as desired. ∎
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