Carmichael Numbers

1. Introduction

Consider the following well-known theorem:

Theorem (Fermat's Little Theorem): Let p be a prime. For all $a \equiv 0 \pmod{p}$, we have

 $a^{p-1} \equiv 1 \pmod{p}.$

What happens if we assume that p isn't prime? If p isn't prime but satisfies the theorem above, then p is called a *Carmichael number*. In this paper, we will be exploring Carmichael numbers, some of their properties, and most importantly, how they are distributed.

2. Basics

Let's define what a Carmichael number is again.

Definition (Carmichael Number): A composite integer is called a *Carmichael number* if for all *a* such that $gcd(a, n) = 1$ we have

 $a^{p-1} \equiv 1 \pmod{p}.$

Example: Here are a few examples of Carmichael numbers:

561, 1105, 1729

Clearly going through every single possible a and checking the condition above would be an inneficient way to determine if a number is a Carmichael number or not. The following criterion gives a much faster way to find out.

Theorem (Korselt's Criterion): A composite number n is a Carmichael number if and only if

- n is squarefree,
- for every prime p dividing n, we also have $(p-1) | (n-1)$.

Proof: Assume n is a Carmichael number. We will first show that n is squarefree via contradiction. Suppose some prime p divides n more than once. Thus we can write $n = p^k n'$ where $k = \frac{p^k n}{n}$ $\nu_p(n) \geq 2$. By the Chinese Remainder Theorem, there exists a such that

$$
a \equiv 1 + p \pmod{p^k}
$$
 and $a \equiv 1 \pmod{n'}$.

These two equations imply that $gcd(a, n) = 1$, so by the definition of Carmichael numbers we have

$$
a^{n-1} \equiv 1 \ (\mathrm{mod} \ n).
$$

This means $a^{n-1}-1=nm$ for some integer $m.$ Taking both sides $\operatorname{mod} p^2$ yields

$$
(1+p)^{n-1} \equiv 1 \ (\mathrm{mod} \ p^2).
$$

Using the binomial theorem on the left side gets rid of all terms except the first two, so we have

$$
1 + (n - 1)p \equiv 1 \pmod{p^2}.
$$

Since p^2 divides n , we have

$$
1 - p \equiv 1 \ (\mathrm{mod} \ p^2),
$$

which is impossible, so n must be squarefree.

Next we show $(p-1) \mid (n-1)$ for each prime $p \mid n.$ Since n is squarefree, p and $\frac{n}{p}$ are relatively prime. Pick any b such that b is a primitive root of p . By the Chinese Remainder Theorem, there exists an a such that

$$
a \equiv b \pmod{p}
$$
 and $a \equiv 1 \pmod{\frac{n}{p}}$.

These two equations imply $gcd(a, n) = 1$, so we have

$$
a^{n-1} \equiv 1 \ (\mathrm{mod} \ n).
$$

Reducing mod p yields

$$
b^{n-1} \equiv 1 \ (\mathrm{mod} \ p).
$$

Since $\mathrm{ord}_p(b) = p - 1$, we must have $(p - 1) \mid (n - 1)$.

Now we show the other direction. Assume *n* composite, squarefree, and $(p - 1) | (n - 1)$ for all primes p dividing n. If $gcd(a, n) = 1$, then for each prime $p | n$ we have $gcd(a, p) = 1$, so

$$
a^{p-1} \equiv 1 \ (\mathrm{mod} \ p).
$$

Since $p-1$ is a factor of $n-1$, we have

$$
a^{n-1} \equiv 1 \ (\mathrm{mod} \ p).
$$

Since this holds for all primes dividing n , we can deduce

$$
a^{n-1} \equiv 1 \ (\mathrm{mod} \ n),
$$

so n is a Carmichael number.

Here is a way to construct Carmichael numbers.

Example: Let $n = (6k+1)(12k+1)(18k+1)$ where $k \ge 1$. Suppose k is chosen such that $6k + 1, 12k + 1$, and $18k + 1$ are all prime. First it's clear that *n* is squarefree. Now exapand *n* to get

$$
n = 1296k^3 + 396k^2 + 36k + 1.
$$

Note that we have $6k | (n-1)$, $12k | (n-1)$, and $18k | (n-1)$. Thus *n* satisfies Korselt's criterion, so it is Carmichael number. Similarly, if k is chosen such that $6k + 1$, $12k +$ 1, $18k + 1$, and $36k + 1$ are all primes, then $n = n = (6k + 1)(12k + 1)(18k + 1)(36k + 1)$ is a Carmichael number. However, not every Carmichael number is of one of these forms. For example, $561 = 3 \cdot 11 \cdot 17$, which does not fall into one of these categories.

Next we deduce some properties that Carmichael numbers must have.

Proposition: Every Carmichael number n is odd, has at least three different prime factors, and **EVEY** Cardinal Hamburg every prime factor of *n* is less than \sqrt{n} .

Proof: Suppose *n* is even. Then by Korselt's Criterion we need $(p-1)$ $(n-1)$ for all primes dividing *n*. However, if *p* is an odd prime, then $p - 1$ is even, while $n - 1$ is odd, which means $(p-1)$ | $(n-1)$ can't hold. Thus, *n* must be odd.

Now suppose $n = pq$ has two prime factors. By Korselt's Criterion, we have $(p - 1) | (pq - 1)$. This implies

$$
\frac{pq-1}{p-1}
$$

is an integer. We can rewrite this as

$$
\frac{pq - q + q - 1}{p - 1} = q + \frac{q - 1}{p - 1}.
$$

Thus we need $(p-1) | (q-1)$. Using the same process, we also have $(q-1) | (p-1)$. Both of these imply $p - 1 = q - 1$, but this is impossible. Thus, *n* must have at least three prime factors. Now we show that every prime factor is less than $\sqrt{n}.$ If p is a prime factor, then we have

$$
\frac{n-1}{p-1} = \frac{p\left(\frac{n}{p}\right)-1}{p-1} = \frac{(p-1)\left(\frac{n}{p}\right)+\frac{n}{p}-1}{p-1} = \frac{n}{p} + \frac{\frac{n}{p}-1}{p-1},
$$

so $(p-1) | \left(\frac{n}{p} - 1\right)$. Thus $p \leq \frac{n}{p}$ $\frac{n}{p}$. Note that is the inequality is not strict then $n = p^2$, which is impossible. Thus we obtain $p < \sqrt{n}$, as desired. ■

[\[1\]](#page-5-0)

3. Distribution

Now we'll discuss the distribution of Carmichael numbers. The first obvious question we should ask: are there infinitely many Carmichael numbers? The answer is yes.

Theorem (Alford, Granville, Pomerance): Let $C(x)$ denote the number of Carmichael numbers up to x . Then

$$
C(x) > x^{\frac{2}{7}}
$$

for sufficiently large x .

The proof of this theorem is quite involved, so we won't delve into it here, but a full proof can be found at [2].

Another reasonable question that can be asked is how many Carmichael numbers with k factors are there? Letting $C_k(x)$ denoting the number of Carmichael numbers up to x with exactly k prime factors, Granville conjectured that

$$
C_k(x)=x^{\frac{1}{k}+o_k(x)}.
$$

In fact, we can get a bound on $C_3(x)$ that is quite close to this value.

Theorem (Balasubrmanian, Nagaraj): Let $C_3(x)$ denote the number of Carmichael numbers up to x with exactly 3 prime factors. Then

$$
C_3(x)=x^{\frac{5}{14}+o(1)}
$$

for sufficiently large x .

Proof: Let *n* be a Carmichael number with three prime factors $2 < p < q < r$. By Korselt's Criterion, we have

$$
n-1 \equiv 0 \pmod{p-1},
$$

\n
$$
n-1 \equiv 0 \pmod{q-1},
$$

\n
$$
n-1 \equiv 0 \pmod{r-1}.
$$

Let $g = \gcd(p-1, q-1, r-1)$. Define a, b, c as $\frac{p-1}{a}$ $\frac{-1}{g}, \frac{q-1}{g}$ $\frac{-1}{g},\frac{r-1}{g}$ $\frac{-1}{g}$ respectively. Thus $a < b <$ c. Note that $n - 1 \equiv 0 \pmod{p - 1} \Rightarrow n - 1 \equiv 0 \pmod{ga} \Rightarrow n - 1 \equiv 0 \pmod{a}$. Writing the left side in terms of g, a, b, c yields

$$
(ga+1)(gb+1)(gc+1)-1\equiv (gb+1)(gc+1)-1=g(gbc+b+c)\equiv 0\ ({\rm mod}\ a).
$$

This implies $gbc + b + c \equiv 0 \pmod{a}$. Similarly, $gab + a + b \equiv 0 \pmod{c}$ and $gac + a + b$ $c \pmod{b}$. Combining these using Chinese Remainder Theomrem yields

$$
g(ab + bc + ca) + a + b + c \equiv 0 \pmod{abc}.
$$

Note that $gcd(ab + bc + ca, abc) = 1$. Thus, given a, b, c, g is uniquely determined mod abc.

Let N be the number of quadruples (q, a, b, c) that satisfy the above congruence and such that $g^3abc\leq x.$ Then $C_3(x)\leq N.$ We write $N=N_1+N_2+N_3$ where N_1 is the number of quadruples with $g>abc,$ N_2 is the number of quadruples with $G < g \leq abc$ where $G = x^{\frac{3}{14}},$ and N_3 is the number of quadruples with $g \leq G$ and $g \leq abc$.

First we estimate N_1 . If (a, b, c) is fixed, then the number of g with $g^3abc \leq x$ that are in particular residue class mod *abc* is at most $\left(\frac{x}{ab}\right)$ $\left(\frac{x}{abc}\right)^{\frac{1}{3}}/(abc) = \frac{x^{\frac{1}{3}}}{(ab)^{\frac{1}{3}}}$ $\frac{x^3}{(abc)^{\frac{4}{3}}}$. Thus we have

$$
N_1 = \sum_{a
$$

The cubed ζ comes from considering just summing over one variable and then multiplying each sum together, and the division by 6 comes from considering permutations. Thus $N_1 = O\big(x^{\frac{1}{3}}\big).$

Next we estimate $N_2.$ If (a, b, c) is fixed, then there is at most one g that satisfies our congruence and that is less than *abc*. If $g > G$ and $g^3abc \leq x$, then $abc \leq \frac{x}{g^3}$ $\frac{x}{g^3} < \frac{x}{G}$ $\frac{x}{G^3}$. Thus N_2 is at most the number of triples (a, b, c) with $a < b < c$ and $abc \leq \frac{x}{C}$ $\frac{x}{G^3}$. Note that a can be at most $\left(\frac{x}{G^3}\right)^{\frac{1}{3}}$ under these conditions, b is at most $\left(\frac{x}{aG^3}\right)^{\frac{1}{2}}$, and c is at most $\frac{x}{abG^3}$. Thus we have

$$
N_2 \leq \sum_{1 \leq a < \frac{1}{3} \atop 1 \leq a < \frac{x^{\frac{1}{3}}}{G}} \sum_{a < b < \left(\frac{x}{aG^3}\right)^{\frac{1}{2}}} \sum_{b < c \leq \frac{x}{abG^3}} 1
$$
\n
$$
\leq \sum_{1 \leq a < \frac{x^{\frac{1}{3}}}{G}} \sum_{a < b < \left(\frac{x}{aG^3}\right)^{\frac{1}{2}}} \frac{x}{abG^3} < \sum_{1 \leq a < \frac{x^{\frac{1}{3}}}{G}} \left(\frac{x}{aG^3}\right) \log\left(\left(\frac{x}{aG^3}\right)^{\frac{1}{2}}\right)
$$
\n
$$
\leq \frac{x}{2G^3} \left(1 + \log\left(\frac{x^{\frac{1}{3}}}{G}\right)\right) \log\left(\frac{x}{G^3}\right) < \frac{x}{6G^3} \log^2 x = \frac{1}{6} x^{\frac{5}{14}} \log^2 x.
$$

Thus $N_2 = O(x^{\frac{5}{14} + o(1)})$.

Finally we estimate $N_3.$ Finding the estimate for N_3 is much more involved, so if the reader is interested in reading the proof in its entirety, we leave a leave reference to the original paper [3]. However, we will outline the beginning of the estimate. In this case $g \leq G$ and $g \leq abc$ where $G = x^{\frac{3}{14}}.$ Let $g(ab + bc + ca) + a + b + c = \lambda abc$ where λ is a positive integer. Then

$$
(\lambda a - g)bc = ga(b + c) + a + b + c.
$$

Note that $6 g b c \ge g (a b + b c + c a) + a + b + c = \lambda a b c$, so $\lambda a \le 6 g$. We break the range for g,a,b as $G_1\leq g\leq 2G_1, A\leq a\leq 2A$, $B\leq b\leq 2B.$ We consider two cases: $B\geq Ax^{\frac{1}{14}}$ and $B<$ $Ax^{\frac{1}{14}}$. From there the paper considers both cases separately, and both have $O\big(x^{\frac{5}{14}+o(1)}\big)$ choices for λ, g, a, b, c .

Thus, overall we have

$$
N = N_1 + N_2 + N_3 = O\left(x^{\frac{1}{3}}\right) + O\left(x^{\frac{5}{14} + o(1)}\right) + O\left(x^{\frac{5}{14} + o(1)}\right) = O\left(x^{\frac{5}{14} + o(1)}\right),
$$

as desired. ∎

References

- [\[1\]](#page-2-0) K. Conrad, "Carmichael Numbers and Korselt's Criterion," *Available at: carmichaelkorselt. pdf (Accessed 2 June 2022)*, 2016.
- [2] W. R. Alford, A. Granville, and C. Pomerance, "There are infinitely many Carmichael numbers," *Annals of Mathematics* , vol. 139, no. 3, pp. 703–722, 1994.
- [3] R. Balasubramanian and S. Nagaraj, "Density of Carmichael numbers with three prime factors," *Mathematics of computation* , vol. 66, no. 220, pp. 1705–1708, 1997.