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Abstract

The question of whether or not there are infinitely many primes p for which 2 is a primitive
root modulo p is of much interest in the subject of analytic number theory. This is a (currently
unresolved) conjecture by Artin, which, however, does hold under the assumption of the gener-
alized Riemann Hypothesis (GRH), as shown by Hooley. In this paper, we discuss how we can
take a generalized version of Hooley’s work to the next level by giving a conditional asymptotic
approximation for the number of primes p in an interval [2, x] for which 2 is a primitive root
modulo p.

1 Introduction and Preliminary Results

1.1 The Work of Artin and Hooley

To begin with, we state Artin’s conjecture on primitive roots:

Conjecture 1.1 (Artin, 1927). There is an infinitude of primes p with the property that 2 is a
primitive root modulo p.

Although Conjecture 1.1 is unresolved as of the writing of this paper, there has been substantial
progress on it that is worth noting. Alongside several useful density results, it has been shown
by Hooley that under the assumption of the generalized Riemann Hypothesis (GRH), Artin’s
conjecture holds true. In particular, the following quantitative statement has been proven:

Theorem 1.2. Assume that GRH holds. Let N2(x) denote the number of primes p ≤ x for
which 2 is a primitive root modulo p. Then, if we let C denote Artin’s constant (to be defined
later), then

N2(x) = C · x

log x
+O

(
x log log x

(log x)2

)
as x approaches ∞.

Our goal is to prove an analogous result for a similar function N(x) that instead counts the
number of positive integers n ≤ x for which 2 is a primitive root modulo n.

1.2 Preliminary Results

As for preliminary results, we are required to introduce the Carmichael totient function λ, as
it will be required to make our definition of “primitive root modulo n” more rigorous.

Definition 1.3. For a positive integer n, we say that the Carmichael function λ(n) of n is the
smallest positive integer m such that for all a relatively prime to n, am ≡ 1 (mod n).

Now, we can define primitive roots modulo composite numbers.
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Definition 1.4 (Primitive root modulo n). We say that g is a primitive root modulo n if and
only if gλ(n) ≡ 1 (mod n).

Essentially, we can break down the condition of being a primitive root modulo n to that of
prime powers.

Lemma 1.5 (Breaking down into prime powers). Let n be an odd positive integer. Then g is a
primitive root modulo n if and only if g is a primitive root modulo pk for each prime power pk

such that pk | n.

2 Wirsing’s Formula

2.1 The Formula

Wirsing’s formula is a useful approximation theorem that utilizes the Euler product in summa-
tions running over a finite interval [1, x]. In particular, we can improve our results from sums
running over primes in [1, x] to those of sums running over all integers in [1, x]. Later, we will
define the characteristic function, to which we will apply this formula.

Theorem 2.1 (Wirsing’s Formula). Let f be an arithmetic function with codomain R such that
f(n) ≥ 0 always and for each prime p and integer k > 0, f(pk) ≤ ck for some constant c < 2.
Furthermore, suppose that there exists a constant α for which∑

p≤x

f(p) = (α+ o(1)) · x

log x

as x approaches ∞. Then, ∑
n≤x

f(n) =
P (x) · x
log x

(
e−γ·α

Γ(α)
+ o(1)

)
,

where P is the Euler product

P (x) =
∏
p≤x

∞∑
k=0

f(pk)

pk
.

2.2 A Particular Arithmetic Function

We will now define the characteristic function f , which is an arithmetic function.

Definition 2.2. For prime powers pk for which 2 is a primitive root modulo pk, we define f(pk)
as

• 1, if p = 2 and k ≤ 2, or p > 2 and 2 is a primitive root modulo pk, and

• 0 otherwise.

Furthermore, f is multiplicative, and thus the evaluation of f at prime powers characterizes
f(n) for all n ∈ N.

Note that we f is not completely multiplicative. However, it is also important to consider
the nontrivial cases of complete multiplicative nature of the function f . Before this, we define
Wieferich primes.

Definition 2.3. A Wieferich prime is any prime p that satisfies

2p−1 ≡ 1 (mod p2).

We will denote W by the set of Wieferich primes, and P as the set of primes under which 2 is
a primitive root.
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A useful fact about Wieferich primes is that they are precisely the set of primes p under which
2 is a primitive root modulo p but is not a primitive root modulo p2, which we state without
proof (one can apply Lemma 1.5). We will utilize this fact extensively in Section 3.

Proposition 2.4. We have f(p2) = f(p)2 if and only if p is a non-Wieferich prime.

Proof. This condition is equivalent to f(p2) = f(p). Note that the property of being a non-
Wieferich prime is achieved when 2 is a primitive root modulo p2 or 2 is not a primitive root
modulo p. By Definition 2.2, the result is clear.

We end this section by noting the relevance of the characteristic function: if we use the notation
for N2(x) as in Theorem 1.2, then ∑

p prime, p≤x

f(n) = N2(x).

In our new function N(x), ∑
n≤x

f(n) = N(x).

3 A Computational Fact

First, we define Artin’s constant.

Definition 3.1. Artin’s constant C is given by the infinite product

C =
∏

p prime

(
1− 1

p(p− 1)

)
.

Moreover, under the assumption of GRH, C is also the density of primes in P.

We will require the following lemma.

Lemma 3.2. Assume that GRH holds. For some constant γ′, the following identity holds:

∏
p≤x,p∈P

(
1− 1

p

)−1

= eC log(x)γ
′
+O

(
log log x

log x

)
.

Proof (Sketch). First, take the natural logarithm of both sides and expand all series of the form
log(1 + a). The result follows from Theorem 1.2 and the Stieltjes integral representation.

4 The Main Theorem

Now, onto the final result:

Theorem 4.1. Assume that GRH holds. Let γ denote the Euler-Mascheroni constant. Let
N(x) denote the number of positive integers n ≤ x for which 2 is a primitive root modulo n.
Then, if we let C denote Artin’s constant (as before), then

N(x) =

(
eγ

′−γ·C

Γ(C)
+ o(1)

)
x

(log(x))1−C

∏
p∈W

(
1− 1

p2

)
as x approaches ∞.
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Proof. First, we can plug in the characteristic function f into Wirsing’s formula (Theorem 2.1)
with α = C (by Theorem 1.2), which produces

∑
n≤x

f(n) =

(
e−γ·C

Γ(C)
+ o(1)

)
x

log x
· P (x),

where P (x) is the Euler product defined in Wirsing’s formula. Via the definition of f , we can
write

P (x) =
∏
p∈W

(
1− 1

p2

) ∏
p≤x, p∈P

(
1− 1

p

)−1

+O(1/x).

Hence

N(x) =

(
e−γ·C

Γ(C)
+ o(1)

)
x

log x

∏
p∈W

(
1− 1

p2

) ∏
p≤x, p∈P

(
1− 1

p

)−1

+O(1/x)

 .

Now, by substituting Lemma 3.2, we can effectively remove the “product of 1− 1/p2” term, as
follows: we have

N(x) =

(
eγ

′−γ·C

Γ(C)
+ o(1)

)
x

(log(x))1−C

∏
p∈W

(
1− 1

p2

)
,

and all error terms vanish. This is the desired result.
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