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Abstract. Sieves have been an important part of number-theory for over a century. In this
expository paper, we discuss a specific type of sieve called the square sieve, and discuss
its various applications with respect to elliptic curves and other number-theoretic objects.

1. Introduction to sieves

What exactly are sieves? Well, a sieve is a technique used in number theory to count,
or estimate the size of a given set of integers. sieve theory is used to obtain suitable (non-
trivial) bounds on cardinality of sets with a particular property, usually related to primes
or squares. sieves have proven to be invaluable tools in number theory. We also note the
following typical questions which involve sieve theory:

(1) Is every even integer n ≥ 2 a sum of two primes? (Goldbach’s conjecture)
(2) Are there infinitely many pairs of primes (p, q) with q = p + 2? (the twin primes

conjecture)
(3) Are there arbitrary long arithmetic progressions consisting only of primes?
(4) Are there infinitely many primes of the form n2 + 1 with n ∈ N?
(5) Is it true that, for every n ∈ N, there is a prime p in the range n2 < p < (n+ 1)2?
(6) For every ε > 0 is there an integer N(ε) such that the interval [N,N +N ε] contains

a square-free number, as soon as N ≥ N(ε)?

1.1. Sieve of Eratosthenes. Perhaps the most famous example of any sieve is perhaps the
so called sieve of Eratosthenes, which is used to generate prime numbers. The algorithm
for implementing the sieve of Eratosthenes is shown below.

(1) Create a list of consecutive integers from 2 through n: (2, 3, 4, . . . , n).
(2) Initially, let p equal 2, the smallest prime number.
(3) Enumerate the multiples of p by counting in increments of p from 2p to n, and mark

them in the list (these will be 2p, 3p, 4p, . . .; the p itself should not be marked).
(4) Find the smallest number in the list greater than p that is not marked. If there was

no such number, stop. Otherwise, let p now equal this new number (which is the
next prime), and repeat from step 3.

(5) When the algorithm terminates, the numbers remaining not marked in the list are
all the primes below n.
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Figure 1. sieve of Eratosthenes

Now that we have looked at an example of a ‘sieve’, we shall discuss precursory sieves,
which will lead us to the square sieve.

2. Precursory sieves

2.1. Gallagher’s sieve [1]. We begin by noting Linnik’s large sieve which gives an upper
bound for the number of integers which remain in an interval of length N after f(p) different
residue classes modulo p have been removed for p ∈ P . Gallagher notes the following upper
bound exists for an absolute constant C.

(2.1)
N + CQ2

S(Q)
where S(Q) =

∏
q≤Q

µ2(q)
∏
p|q

f(p)

p− f(p)
.

Gallagher notes that in some cases, 2.1 is best possible. As an example of this, we consider
the case when all quadratic non-residues modulo p are removed for each prime p. Therefore,
the perfect squares remain. Since f(p) = p−1

2
, this implies that S(Q) ≫ Q and thus the

upper bound is ≪ N1/2 for Q = N1/2. However, the bound is not optimal, especially when
f(p) is close to p, and therefore Gallagher introduces a sieve to get a better result.
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Theorem 2.1 (Gallagher’s sieve). Set g(p) = p−f(p). If all but g(q) residue classes modulo
q are removed for each prime power q in a finite set P , then the number of integers which
remain in any interval of length N is at most(∑

q∈P

Λ(g)− log(N)

)
/

(∑
q∈P

Λ(q)

g(q)
− log(N)

)
where Λ(q) = log(p) for q = pα and g(q) > 0.

Proof. Assume Z integers modulo n remain in a given interval of length N and Z(h, q) of
these satisfy n ≡ h (mod q), then

Z2 =

(
q∑

h=1

Z(h, q)

)2

≤ g(q)

q∑
h=1

(Z(h, q))2.

Now, since q ∈ P , we have Z(h, q) = 0 for all but g(q) values of h. Summing over P , we get

Z2
∑
q∈P

Λ(q)

g(q)
≤
∑
q∈P

Λ(g)
∑

m≡n(q)

1 =
∑
|d|≤N

( ∑
m−n=d

1

) ∑
q|d,q∈P

Λ(q)

 ≤ Z
∑
q∈P

Λ(q)+(Z2−Z) log(N).

Finally, the fact that
∑

q|d Λ(q) = log(|d|) implies 2.1. ■

We also obtain the following corollary.

Corollary 2.2. If all but G residue classes modulo q have been removed for each q ∈ P ,
then the number of integers which remain in any interval of length N is at most

(1)

≤ G if
∑
q∈P

Λ(q) > G2 log(N)

(2)

≤ 2G− 1 if
∑
q∈P

Λ(q) ≥ 2G log(N)

Proof. 2.1 tells us that

Z ≤ L− l

L/G− l
= G+

G2L−Gl

L−Gl
(L > Gl).

If L > G2l, then Z ≤ G + 1. We may assume G is an integer, so this implies Z ≤ G. If
L ≥ 2Gl, we get Z ≤ 2G− 1.

■

The upper bound given above is certainly best possible since any G different integers will
represent ≤ G different residue classes (mod q), for every q. The condition L > G2l in the
corollary is also best possible if G = 1. For example, if N is a square-free positive integer
and P is the set of prime divisors of N , then L = l, while the two integers 0 and N represent
only the zero class (mod p) for each p ∈ P . Now, we turn our attention towards another
family of sieves introduced by Montgomery and Davenport.
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2.2. Montgomery and Davenport’s sieve [2], [3]. We begin by noting that Montgomery
and Davenport’s sieve requires more background as compared to Gallagher’s sieve because of
its analytic nature. Therefore, we begin by describing the pre-requisite inequalities required
to set-up the sieve.

2.2.1. Pre-requisite Inequalities.

Theorem 2.3 (Sobolev-Gallagher). Let a < b where (a, b) ∈ R2 and f be a continuous
complex-valued function on [a, b] with continuous first derivative in (a, b). Then,∣∣∣∣f (a+ b

2

)∣∣∣∣ ≤ 1

b− a

∫ b

a

|f(x)| dx+
1

2

∫ b

a

|f ′(x)| dx

and

|f(u)| ≤ 1

b− a

∫ b

a

|f(x)| dx+

∫ b

a

|f ′(x)| dx

for any u ∈ [a, b]

Now, by applying 2.3 repeatedly, we get the following lemma.

Lemma 2.4. Let T0 and T ≥ δ ≥ 0 be real numbers, and let f be a continuous complex-
valued function on the interval [T, T + T0] with continuous derivative in (T, T+T0). Now, let
J be a set of real numbers in the interval

[
T0 +

δ
2
, T0 + T − δ

2

]
, and suppose that |t− t′| ≥ δ

for distinct t, t′ ∈ J . Then,

∑
t∈J

|f(t)| ≤ 1

δ

∫ T+T0

T0

|f(x)|dx+
1

2

∫ T+T0

T0

|f ′(x)|dx.

Lemma 2.5. Let T0, T ≥ δ ≥ 0 be real numbers and let J be a finite set in the interval
[T0 +

δ
2
, T0 + T − δ

2
]. Define Nη(x) =

∑
t∈J ,|t−x|<η 1. Then, for f defined in 2.4 and η > 0,

we have

∑
t∈J

|f(t)| ·Nδ(t)
−1 ≤ 1

δ

∫ T0+T

T0

|f(x)|dx+
1

2

∫ T+T0

T0

|f ′(x)|dx.

By setting f(t) = S(t)2, we get f ′(t) = 2S(t)S ′(t). Now, from the above-mentioned in-
equality and by utilizing Cauchy-Schwarz, we get the following lemma from Gallagher.

Lemma 2.6 (Gallagher). Let T0, T, δ,J and Nδ(t) be defined as above. Then, suppose S is
a continuous complex valued function in the interval [T, T0+T ], with a continuous derivative
in (T, T0 + T ). Then,

∑
t∈J

Nδ(t)
−1|S(t)|2 ≤ 1

δ

∫ T+T0

T0

|S(t)2|dt+

√∫ T+T0

T0

|S(t)|2dt ·
∫ T+T0

T0

|S ′(t)|2dt.

Now that we have looked at analytic sieves, we turn our attention towards generalizations
of Bessel’s inequality for vectors in an inner-space product. As a reminder, Bessel’s inequality
is stated below.
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Lemma 2.7 (Bessel’s Inequality). Let φ1, φ2, · · · , φr be a sequence of orthonormal elements
of an inner product space over the complex numbers, then for some ζ, the following inequality
holds

R∑
r=1

|(ζ, φr)|2 ≤ ∥ζ∥2.

Furthermore, if R = 1, we have

|(ζ, ϱ)| ≤ ∥ζ∥∥ϱ∥
for any ζ, ϱ.

We desire an inequality that works even when φ1, φ2, · · · , φr are not orthonormal. The
following lemma which was discovered by Boas does exactly that!

Lemma 2.8. The inequality

R∑
r=1

|(ζ, φr)|2 ≤ ∥ζ∥

max 1≤r≤R ∥φr∥+

(∑
r ̸=s

|(φr, φs)|2
)1/2


holds for any φ1, φ2, · · · , φr.

Bombieri stated the following lemma, which is a variation of 2.8.

Lemma 2.9 (Bombieri). If ζ, φ1, φ2, · · · , φr are elements of an inner product space over the
complex numbers then

R∑
r=1

|(ζ, φr)|2 ≤ ∥ζ∥2
(
max 1≤r≤R

R∑
r=1

|(φr, φs)|

)
.

Selberg found a stronger result independently of Bombieri, which is stated below.

Lemma 2.10 (Selberg). If ζ, φ1, φ2, · · · , φr are elements of an inner product space over the
complex numbers then

R∑
r=1

|(ζ, φr)|2 ·

(
R∑

s=1

|(φr, φs)|

)−1

≤ ∥ζ∥2

We now circle back to Gallagher’s theorems, in particular, we state a generalization of
Gallagher’s sieve. Then, the following lemma holds.

Lemma 2.11. Let S(t) =
∑

µ∈M c(µ)e(µt) where e(x) = e2πix, M is a countable set of real

numbers, and c(µ) is a sequence of real or complex numbers subject to the condition that∑
µ c(µ) < ∞, then for any ε > 0, if δ, T are positive real numbers satisfying the inequality

δT ≤ 1− ε, then ∫ T

−T

|S(t)|2dt ≪ ε

∫ ∞

−∞
|Cδ(x)|2dx

where

Cδ(x) = δ−1
∑

|µ−x|<δ/2

c(µ).

The above-mentioned theorem can be generalized in context of Dirichlet series as follows.
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Lemma 2.12. Define S(s) =
∑∞

n=1
a(n)
ns to be absolutely convergent for Re(s) > 0, then∫ T

−T

|S(it)|2dt ≪ T 2

∫ ∞

0

∣∣∣∣∣
τy∑
y

an

∣∣∣∣∣
2
dy

y

where τ = exp(T−1) and T > 0.

With that, we conclude the pre-requisite inequalities and move on to the main portion of
Montgomery and Davenport’s sieve.

2.2.2. Main Sieve. Our main goal in this section is to find a bound an upper bound for∑
x∈X S(x), where X is a sequence of real numbers well-spaced modulo 1, and S(x) is an

arbitrary exponential polynomial, defined as S(x) :=
∑M+N

n=M+1 ane(nx) with e(x) = e2πix.
Now, from 2.6, we immediately have the following theorem.

Theorem 2.13 (Davenport Sieve). Define S(x) as above. Then, if X is a set of real numbers
in (0, 1], then if 0 < δ < 1

2
, then∑

x∈X

Nδ(x)
−1|S(x)|2 ≤ (δ−1 + πN)

∑
n

|an|2,

where

Nδ(y) =
∑
x∈X

∥x−y∥<δ

1.

Davenport gave an explicit version of the sieve mentioned above, with the assumption that
δ ≤ 1

4N
. We now state a useful corollary discovered by Gallagher.

Corollary 2.14 (Gallagher). If S(x) is defined as above, and X , is a set of real numbers
for which ∥x− x′∥ ≥ δ > 0, wherever x and x′ are distinct members of X , then∑

x∈X

|S(x)|2 ≤
(
δ−1 + πN

)∑
n

|an|2.

Furthermore, if x ∈ X are equally spaced (mod 1), then δ
∑

|S(x)|2 is a Riemann sum
approximating to ∫ 1

0

|S(x)|2dx =
∑

|an|2.

Theorem 2.15 (Large Sieve Inequality). Let X be a finite set of points of R/Z. Set

δ = min{∥x− x′∥, x ̸= x′ ∈ X}.

For any sequence of complex numbers (un)1≤n≤N , we have

∑
x∈X

∣∣∣∣∣∑
n

une(nx)

∣∣∣∣∣
2

≤
∑
n

|un|2(N − 1 + δ−1).
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3. Heath-Brown’s Square Sieve

Let A be a sequence of integers. Suppose we have information about the distribution of A
with respect to certain moduli. How many squares can A contain? This problem lies at the
heart of Heath-Brown’s [4] seminal 1984 paper. In order to formulate the above-mentioned
problem rigorously, let ω(n) ≥ 0 for each n ∈ Z, and suppose

∑∞
i=1 ω(i) < ∞. Writing A

for the sequence ω(n), we define S(A) =
∑∞

n=1 ω(n
2). We now introduce Heath-Brown’s

non-trivial bound on S(A).

Theorem 3.1. Let P be a set of P primes. Suppose that ω(n) = 0 for n = 0 or |n| ≥ eP .
Then

S(A) ≪ P−1
∑
n

ω(n) + P−2
∑
p̸=q

p,q∈P

(∑
n

ω(n)

(
n

pq

))
,

where

(
n

pq

)
is the Jacobi symbol.

The attentive amongst the readers would have noticed the fact that Heath-Brown’s theo-
rem has an additional side condition. We show that this side-condition is necessary.
Firstly, we note that if p | n for some fixed n > 0, and for all p ∈ P , and ω(n2) = 1, ω(m) = 0
for m ̸= n, then S(A) = 1, but the left hand side of the theorem is O (P−1), making the
bound weak by log(P ) factors at least. For an example, we consider ω(n) = 1 for 1 ≤ n ≤ x,
and ω(n) = 0 otherwise. Now, let P be the set of primes less than or equal to x1/2. Then,
using the Polya-Vinogradov inequality, we get∑

n

ω(n)

(
n

pq

)
≪ x1/2 log(x).

Now, we note that the right hand side of the equation is actually O(x1/2 log x) instead of
O(x1/2). Therefore, the side-condition is necessary.

We now show the proof of the theorem.

Proof. Firstly, we begin by considering the expression∑
=
∑
n

ω(n)

(∑
p∈P

(
n

p

))2

.

We note that each n is clearly counted with a non negative weight. Now, if n = m2, then we
have ∑

p∈P

(
n

p

)
=

∑
p∈P,p∤m

1 ≥ P −
∑
p|m

1 ≫ P .

Now, note that ∑
p|m

1 ≪ logm

log logm
=⇒

∑
≫ P2S(A).

However, we also have∑
=
∑
p,q∈P

∑
n

ω(n)

(
n

pq

)
=
∑
p∈P

∑
n;p|n

ω(n) +
∑

p+q∈P

∑
n

ω(n)

(
n

pq

)
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≤ P
∑
n

ω(n) +
∑

p+q∈P

∑
n

ω(n)

(
n

pq

)
,

which completes our proof. ■

We now note an important corollary of the sieve.

Theorem 3.2 (Square Free Corollary). Let E(n) = 1 if n is square-free, and E(n) = 0
otherwise, then ∑

n≤x

E(n)E(n+ 1) = C · x+O
(
x7/11(log x)7

)
,

where

C =
∏
p

(
1− 2p−2

)
.

In order to demonstrate how the sieve works, we shall end up proving a weaker statement
with error term O(x2/3 log(x)3), which is still an improvement over the O(x2/3+ε) error term
which was discovered by Carlitz by a factor of xε.

Proof. First, begin by noting that

E(n) =
∑
j2|n

µ(j),

where µ is the Mobius function. Now, we have∑
n<x

E(n)E(n+ 1) =
∑
j,k

µ(j)µ(k)N(x, j, k),

where

N(x, j, k) = #{n ≤ x : j2|n, k2|n+ 1}.
We note that N(x, j, k) = xj−2k−2+O(1) if gcd(j, k) = 1, and 0 otherwise. We now estimate
the contributions of terms jk ≤ y for some y which will be specified later. In particular, we
note that the contributions are simply

x
∑
jk≤y

(j,k)=1

µ(j)µ(k)(jk)−2 +O

(∑
jk≤y

1

)

= x
∑

(j,k)=1

µ(jk)(jk)−2 +O

(
x
∑
n>y

d(n)n−2

)
+O

(∑
n≤y

d(n)

)
= Cx+O

(
xy−1 log y

)
+O(y log y).

where d(n) is equivalent to σ0, the number of divisors function. We also note that the
remaining values of j, k lie in O((log(x)2)) ranges J < j ≤ 2J,K < k ≤ 2K, where

JK ≫ y, J,K ≪ x1/2.

Hence there exist some such, J,K for which∑
jk

µ(j)µ(k)N(x, j,K) ≪ N(log(x))2,
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where ∑
jk>y

µ(j)µ(k)N(x, j, k) ≪ N(log x)2

N = #
{
(j, k, u, v); J < j ≤ 2J,K < k ≤ 2K, j2u+ 1 = k2v ≤ x

}
.

We will choose x1/2 ≤ y ≤ x, whence

(3.1)
∑
n<x

E(n)E(n+ 1) = Cx+O(y log x) +O
(
N(log x)2

)
.

Lastly, we have to bound N. We present the following bounds. We give an elementary
bound

N ≪
∑

K<k<2K

∑
u≤xJ−2

∑
J<j≤2J

j2u ≡−1 (mod k2)

1.

Since this congruence condition has at most ≪ d(k) solutions mod(k2), the innermost sum
is ≪ (1 + JK−2) d(k). Thus

(3.2) N ≪ xJ−2
(
1 + JK−2

)∑
k

d(k) ≪
{
xKJ−2 + x(JK)−1

}
log x

Now, WLOG, we assume that J ≫ K, since the alternate case is more or less similar. Since
JK ≫ y, the bound 3.2 yields N ≪ xy−1/2 log x. On taking y = x2/3 the estimate 3.1 would
show that is true with the weaker error term O

(
x2/3(log x)3

)
. This is already better than

the result of Carlitz by an xε factor.
■

4. Applications of Square Sieve

4.1. Sieves with Large Moduli. In this section, we look at work done by Baier and Zhou
(see [5], [6], [7]), and give an alternative proof of a theorem by them using Heath-Brown’s
square sieve, as covered by Baier [8].

Theorem 4.1 (Baier and Zhou). Let ε > 0. Then for any M ∈ Z, N ∈ N, Q ≥ 1 and
sequence of complex numbers (an)n∈Z, we have

(4.1)
∑
q≤Q

q2∑
a=1

(a,q)=1

∣∣∣∣S ( a

q2

)∣∣∣∣2 = O
(
(NQ)ε

(
Q3 +N +min

{
N
√

Q,
√
NQ2

})
Z
)
,

where

(4.2) S(α) :=
M+N∑

n=M+1

ane(nα) and Z :=
M+N∑

n=M+1

|an|2 .

We note that 4.1 implies∑
q≤Q

q2∑
a=1

gcd(a,q)=1

∣∣∣∣S ( a

q2

)∣∣∣∣2 = O((NQ)ε(Q3 +N +
√
NQ2)Z)

for some ε > 0. Now, we utilize 2.13 to obtain the following lemma.
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Lemma 4.2. Assume that Q ≥ 1, N ≥ 1 and 0 < ∆ ≤ 1. Then,∑
Q<q≤2Q

q2∑
a=1

gcd(a,q)=1

∣∣∣∣S ( a

q2

)∣∣∣∣2 ≪ (
N +∆−1

)
Z ·max

a∈R
P (α,∆),

where

P (a,∆) =
∑

Q<q≤2Q

q2∑
a=1

gcd(a,q)=1
|a/q2−α|≤∆

1.

Now, in order to detect squares, we utilize 3.1. Dividing the q-range in (4.1) into dyadic
intervals, it suffices to prove that

(4.3)
∑

Q<q≤2Q

q2∑
a=1

(a,q)=1

∣∣∣∣S ( a

q2

)∣∣∣∣2 = O
(
(NQ)ε

(
Q3 +N +

√
NQ2

)
Z
)
.

We estimate P (α,∆) for any α ∈ R and for ∆ = 1
N

by dividing into two cases. Now,
define the set of major arcs as

M =
⋃

v≤1/(500Q2∆)

v⋃
u=1

gcd(u,v)=1

[
u

v
− 1

10Q2v
,
u

v
+

1

10Q2v

]
.

The case where α ∈ M can be sorted directly by a Diophantine approximation, and therefore
we resort to the case where α ∈ R \M.

We begin by noting that by Dirichlet’s approximation theorem, there exist (b, r) ∈ Z2 such
that

1 ≤ r ≤ 500Q2 gcd(b, r) = 1 and

∣∣∣∣ br − α

∣∣∣∣ ≤ 1

500Q2r
.

If r ≤ 1
500Q2∆

, it follows that α ∈ M. Thus, we have

1

500Q2∆
< r ≤ 500Q2 gcd(b, r) = 1, and

∣∣∣∣ br − α

∣∣∣∣ ≤ ∆.

It follows that

(4.4) P (α,∆) ≤ P

(
b

r
, 2∆

)
.

Let Φ1 and Φ2 be infinitely differentiable compactly supported functions from R to R+,
supported in the intervals [1/2, 5] and [−10, 10] and bounded below by 1 on the intervals
[1, 4] and [−4, 4], respectively. Then

(4.5) P

(
b

r
, 2∆

)
≪
∑
q∈Z

Φ1

(
q2

Q2

)
·
∑
a∈Z

Φ2

(
a− q2b/r

Q2∆

)
.

Let

(4.6) R > (QN)ε
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be a parameter, to be fixed later, and

(4.7) P := {p ∈ P : R < p ≤ 2R and p ∤ r} ,

where P is the set of all primes. In the notation of Theorem 3.1, we have

(4.8) P := ♯P = π(2R)− π(R)− ω(r) ∼ R

logR
.

Now applying the square sieve, Lemma 3.1, to the right-hand side of (4.5), we get

P

(
b

r
, 2∆

)
≪ 1

P
·
∑
n∈Z

Φ1

(
n

Q2

)
·
∑
a∈Z

Φ2

(
a− nb/r

Q2∆

)
+

1

P 2
·
∑

p1,p2∈P
p1 ̸=p2

∣∣∣∣∣∑
n∈Z

Φ1

(
n

Q2

)
·
(

n

p1p2

)
·
∑
a∈Z

Φ2

(
a− bn/r

Q2∆

)∣∣∣∣∣ .(4.9)

Now, the RHS can be evaluated as follows.∑
n∈Z

Φ1

(
n

Q2

)
·
∑
a∈Z

Φ2

(
a− nb/r

Q2∆

)
≤

∑
Q2/2≤n≤5Q2

∑
a∈Z

|a/n−b/r|≤20∆

1

=
∑

Q2/2≤n≤5Q2

∑
a∈Z

(a,n)≤2500Q4∆
|a/n−b/r|≤20∆

1 +
∑

Q2/2≤n≤5Q2

∑
a∈Z

(a,n)>2500Q4∆
|a/n−b/r|≤20∆

1

≤
∑

d≤2500Q4∆

∑
Q2/(2d)≤n1≤5Q2/d

∑
a1∈Z

(a1,n1)=1
|a1/n1−b/r|≤20∆

1 +
∑

n1≤1/(500Q2∆)

∑
a1∈Z

(a1,n1)=1
|a1/n1−b/r|≤20∆

∑
Q2/(2n1)≤d≤5Q2/n1

1.

The rest of the proof utilizes a delicate Poisson Summation, which is beyond the scope of
this paper. However, the application of the square sieve is apparent!

4.2. Elliptic Curves. In this section, we look at unexpected applications of the square
sieve. In particular, we look at applications of the square sieve to elliptic curves and other
algebraic varieties. First, we begin by stating the correspondence between binary cubic forms
and elliptic curves, which was first discovered by Mordell. We give a sketch of the proof given
by Bennett [9]

Theorem 4.3. There exists a correspondence between the set of integral solutions Sk =
{(X1, Y1) , . . . , (XNk

, YNk
)} for the Mordell equation Y 2 = X3 + k and the set Tk of triples

(F, x, y) where F is a binary cubic form of the shape ax3 + 3bx2y + 3cxy2 + dy3 with dis-
criminant −108k and with integers x, y satisfying F (x, y) = 1. Furthermore, there exists a
bijection between Tk and Sk under the actions of SL2(Z) and GL2(Z).

Proof. Let

F = F (x, y) = ax3 + 3bx2y + 3cxy2 + dy3

be a binary cubic form with the discriminant

DF = −27(a2d2 − 6abcd− 3b2c2 + 4ac3 + 4b3d)
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We observe the fact that the set of the binary cubic forms of the shape F is closed within
the larger set of binary cubic forms of the set Z[x, y] under the action of both SL2 and GL2.
Now, describe the Hessian of the F to be

H = HF (x, y) = −1

4

(
∂2F

∂x2

∂2F

∂y2
−
(

∂2F

∂x∂y

)2
)

and the Jacobian determinant of F and H, a cubic form G = GF defined as

G = GF (x, y) =
∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
.

Now, we have

H/9 =
(
b2 − ac

)
x2 + (bc− ad)xy +

(
c2 − bd

)
y2

and

G/27 = a1x
3 + 3b1x

2y + 3c1xy
2 + d1y

3,

where

a1 = −a2d+3abc−2b3, b1 = −b2c−abd+2ac2, c1 = bc2−2b2d+acd, d1 = −3bcd+2c3+ad2.

These covariants satisfy the syzygy

4H(x, y)3 = G(x, y)2 + 27DF (x, y)2.

Defining D1 = D/27, H1 = H/9 and G1 = G/27, we get

4H1(x, y)
3 = G1(x, y)

2 +D1F (x, y)2.

We note that if (x0, y0) satisfies the equation F (x0, y0) = 1 and D1 ≡ 0( mod 4) then
necessarily G1 (x0, y0) ≡ 0( mod 2). We may therefore conclude that Y 2 = X3 + k, where

X = H1 (x0, y0) , Y =
G1 (x0, y0)

2
and k = −D1

4
= − D

108
.

It follows that, to a given triple (F, x0, y0), where F is a cubic form of the shape ax3 +
3bx2y+3cxy2+dy3 with discriminant −108k, and x0, y0 are integers for which F (x0, y0) = 1,
we can associate an integral point on the Mordell equation Y 2 = X3 + k. The converse of
this can be proven easily by taking the covariants of the factors to be

X =
G1(1, 0)

2
=

G(1, 0)

54
and Y = H1(1, 0) =

H(1, 0)

9

The proof of bijection between Tk and Sk under the action of GL2(Z) and SL2(Z) is achieved
by constructing a contradiction. ■

Now that we have constructed the bijection between binary cubic forms and elliptic curves,
we note that the number of integral solutions for an elliptic curve of the form E := y2 = x3+k,
denoted by N(E) = O(h3(k)), where h3(k) is the class number of binary cubic forms with

discriminant k, or alternatively, the 3 part of the class number of the quadratic field Q(
√
k).

Therefore, bounding h3(k) will allow us to bound the number of integral solutions on elliptic
curves of the form y2 = x3 + k. In fact, the following lemma by Bennett proves a stronger
statement by making the constant explicit.
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Lemma 4.4. If k is a nonzero integer, then the equation

y2 = x3 + k

has at most 10h3(−108k) solutions in integers x, y where h3(−108k) is the class number of
the binary cubic forms with discriminant −108k, which is also referred to as the 3-part of
class number of the quadratic field Q(

√
−108k) = Q(

√
−3k).

Now that we have made the relationship between Mordell curves and binary cubic forms
explicit, we present an argument by Pierce [10], which shows that counting points on a cubic
surface with certain constraints suffices to bound h3(k).

Theorem 4.5 (Pierce). Let d be a non-zero integer, then the 3 part of the class number of

the quadratic field, Q(
√
d) admits the bound

h3(d) = O(d27/56+ε)

for all ε > 0.

We provide a partial sketch of the work done by Pierce [11]

First, we begin by reducing the problem of bounding h3(d) to counting integral solutions
of a Diophantine equation with certain constraints, as shown below. Let d be a square-free
positive integer. By the Scholz reflection principle log3(h3(−d)) and log3(h3(+3d)) differ by
a bounded amount (indeed, they differ by at most one). Hence, we may restrict our attention
to imaginary quadratic fields Q(

√
−d). Suppose [a] ∈ CL(−d) is a non-trivial element such

that [a]3 is the principal ideal class. By the Minkowski bound, there is an integral ideal b in

[a] with norm N(b) ≤ 2
√

|∆|/π where ∆ is the discriminant of the field. Furthermore, since
b3 is principal, we may write 4(N(b))3 = y2 + dz2 for some y, z ∈ N. Therefore, an integer
point on the cubic surface

4x3 = y2 + dz2

specifies at most O(Dε) ideals in ideals b, so we may obtain an upper bound for h3(−d) by
counting the number of integer points on (3) in the region x ≤ L, y ≤ M , and z ≤ N , where

(4.10) L =

(
4

π

)
d1/2, M =

(
16

π3/2

)
d3/4, N =

(
16

π3/2

)
d1/4.

We obtain a nontrivial bound for h3(−d) by counting the number of squares of the form

4x3 − dx2 with x ≤ L, z ≤ N.

Now, Pierce introduces the square sieve to deal with the above-mentioned question in a
particularly interesting way.

Theorem 4.6 (Square Sieve Variant). Let A = {uv : u ∈ U , v ∈ V} where U and V are
disjoint sets of primes. Let A = #A, U = #U , and V = #V. Suppose that ω(n) = 0 for
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n = 0 and for |n| ≥ exp(min(U, V )). Then

∑
n

ω
(
n2
)
≪A−1

∑
n

ω(n) + A−2
∑

f ̸=g∈A
(f,g)=1

∣∣∣∣∣∑
n

ω(n)

(
n

fg

)∣∣∣∣∣
+ V A−2

∑
u̸=u′∈U

∣∣∣∣∣∑
n

ω(n)
( n

uu′

)∣∣∣∣∣+ A−2|E(U)|

+ UA−2
∑

v ̸=v′∈V

∣∣∣∣∣∑
n

ω(n)
( n

vv′

)∣∣∣∣∣+ A−2|E(V)|.

The error terms E(U) and E(V) are defined by:

E(U) =
∑
v∈V

∑
u̸=u′∈U

∑
n
v|n

ω(n)
( n

uu′

)
,

E(V) =
∑
u∈U

∑
v ̸=v′∈V

∑
n
u|n

ω(n)
( n

vv′

)
.

Proof.

Σ =
∑
n

ω(n)

(∑
f∈A

(
n

f

))2

Each n is summed with non-negative weight, and in particular, if n = m2, then∑
f∈A

(
n

f

)
=
∑
f∈A

(
m2

f

)
=

∑
f∈A

(f,m)=1

1 ≥ A−
∑
f∈A

(f,m)̸=1

1 ≫ A

since ω(n) = 0 for |n| ≥ exp(min(U, V )). Thus

(4.11) Σ ≫ A2
∑
n

ω
(
n2
)

But also

Σ =
∑
f,g∈A

∑
n

ω(n)

(
n

fg

)
=
∑
f∈A

∑
n

ω(n)

(
n

f 2

)
+
∑

f ̸=g∈A
(f,g)=1

∑
n

ω(n)

(
n

fg

)

+
∑

f ̸=g∈A
(f,g) ̸=1

∑
n

ω(n)

(
n

fg

)
.
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The last term mentioned above may be broken into the two terms

S(U) + S(V) =
∑
v∈V

∑
u̸=u′∈U

∑
n
v∤n

ω(n)
( n

uu′

)
+
∑
u∈U

∑
v ̸=v′∈V

∑
n
u∤n

ω(n)
( n

vv′

)
.

Furthermore, S(U) may be written as a main term M(U), minus a correction term E(U)

S(U) = M(U)− E(U) = V
∑

u̸=u′∈U

∑
n

ω(n)
( n

uu′

)
−
∑
v∈V

∑
u̸=u′∈U

∑
n
v|n

ω(n)
( n

uu′

)
.

Analogously, we may write S(V) = M(V)− E(V). Thus, we have the Σ inequality.

|Σ| ≪A
∑
n

ω(n) +
∑

f ̸=g∈A
(f,g)=1

∣∣∣∣∣∑
n

ω(n)

(
n

fg

)∣∣∣∣∣
+ V

∑
u̸=u′∈U

∣∣∣∣∣∑
n

ω(n)
( n

uu′

)∣∣∣∣∣+ |E(U)|

+ U
∑

v ̸=v′∈V

∣∣∣∣∣∑
n

ω(n)
( n

vv′

)∣∣∣∣∣+ |E(V)|.

The result then follows by comparison with 4.11. ■

Now, let

T (d) = #
{
x, y, z ∈ N : y2 = 4x3 − dz2 : x ≤ L, y ≤ M, z ≤ N

}
,

where L,M,N are as defined in 4.10. Then

h3(−d) ≪ dϵT (d).

Furthermore, let

ω(n) = #
{
x, z ∈ N : n = 4x3 − dz2 : x ≤ L, z ≤ N

}
,

such that

T (d) =
∞∑
n=1

ω
(
n2
)
.

Therefore, if we obtain nontrivial bound T (d) ≪ d1/2−θ, for some constant θ > 0, we will
obtain a nontrivial bound on h3(d). The abovementioned excursion shows the utility of the
square sieve!
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