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Abstract. In this paper, we explore properites of the polylogarithm function Lik(z), fo-
cusing mainly on the dilogarithm(k=2) and its extention the Bloch-Wigner function D(z).
We start with some computational properties of li2(z) and some basic values and then
introduce D(z) and use it to find the volume of an ideal tetrahedron in H3

1. Introduction

The polylogarithm is a somewhat natural extension of the taylor series for ln(1-x) A
ploylogarithm is defined by the series

Lik(z) =
∞∑
n=1

zn

nk

which converges for |z| < 1 and m ∈ Z > 0. It has many applications in number theory,
geometry and is a key component in many computations in quantum mechanics.

2. Values and equations

The simp1lest one and the one we will focus on is the dilogorithm: Li2(z) which has
relatively few easily computable values:

Li2(0) = 0

Li2(1) = ζ(2) =
π2

6

Li2(−1) = −π2

12

Li2(
1

2
) =

π2

12
− 1

2
log2(2)Li2(−ϕ) = −π2

10
+

1

2
log2(ϕ)

There are 8 known in total and the other values are variations of 1±
√
5

2
. Despite this, there

are a lot of functional equations which Li2(z) satisfies most of which come from the inversion
formulas.
To show these formulas to be true it will be helpful to consider another form of the diloga-
rithm.

(1) Li2(z) = −
∫ z

0

ln(1− u)

u
du

Which converges to Li2 on C \ [1,∞) Which can be checked to be equivalent to our original
definition be a simple swapping of sums. Now the inversion formulas.
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Proposition 2.1.

Li2(
1

z
) = −Li2(z)−

π2

6
− 1

2
log2(−z)

Li2(
1

z
) = −Li2(z) +

π2

6
− log(z) log2(1− z)

The proof for both is pretty similar and somewhat boring so we’ll just do an outline of 1
z

case.

Proof. We will show that Li2(z) +Li2(
1
z
) = −1

2
log2(−z)− π2

6
and to do this we consider the

integral representation of Li( − z) and Li2(−1
z
) which, after a sub ofu = −z we get∫ z

0

log(1 + u)

u
du

∫ 1
z

0

log(1 + u)

u

Then, we substitute x = 1/u and simplify to get∫ ∞

0

log(1 + y)

y
dy + lim

y→∞

1

2
ln2y +

1

2
log2(y)

If we split it up to the part from 0 to 1 and the part from 1 to ∞, then substitute y = 1
u

into the inifinite integral we get

−π2

6
− lim

y→0

1

2
ln2y + limy→∞

1

2
ln2y +

1

2
log2(y)

which simplifies down to our desired result. □

From the previous two equations we get that Li2(z), Li2(
1

1−z
, Li2(

z−1
z
), Li2(

1
z
), Li2(1 −

z), Li2(
z

z−1
)) are equal modulo elementary functions(i.elogk(x), etc. . . )

3. Multilpe Zeta values and Multiple logarithms

One of the many ways that multiple polylogarithms values can be used is to evaluate
multiple zeta values, which are objects which have garnered a lot of attention as they seem
to show up very often in expressions for Feynman amplitudes in quantum field theory.

Lix1,...,xm(k1, . . . , km) =
∑

n1>...ni≥1

xn1
1 . . . xnm

m

nk1 · · ·nkm

. At x1 = x2 . . . xi = 1 the logarithm becomes a multiple zeta value ζ(k1, k2 . . . ki) One of the
main invariants between zeta values is their weight,

∑
n≤i ki, so there is an algebraic relation

between Li2 and Lix,y(1, 1)(
∑

0<n<m
xnym

nm
) given as follows:

Proposition 3.1.

Lix,y(1, 1) = Li2(
xy − y

1− y
)− Li2(

−y

1− y
)− Li2(xy)

Which we will prove by taking the derivative and taking initial values.

Proof. If we take

δ

δy
Li2(1, 1) =

∑
n>m>0

xm

m
yn−1 =

∞∑
m=1

xm

m

ym

1− y
=

1

1− y
log

1

1− xy
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If we calculate the derivative on the right hand side we get the same expression and since
both vanish at y = 0, the equation holds for all y and analogously all x. □

The next results will be stated but not prove, but both these results were already known
to Euler, the first one from his book ”Meditations about a singular type of series” gives an
attempt at a closed for for the ever elusive ζ(3) by considering another multiple polylogarithm
of the same weight.

ζ(3) = ζ(2, 1)

The other equation gives a way to relate muliples of zeta values to multiple zeta values.

ζ(s1)(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

Further discussions of multiple logarithms and multiple zeta vlaues are in [GF17]

4. Bloch-Wigner and Hyperbolic Volume

However, this definition of Li2(z) jumps by 2πlog|z|. So to counteract this jump we add
on a term of arg(1 − z)log|z| which takes on values between −π and π and thus the new
function Li2(z) + arg(1− z)log|z|. Its imaginary part

D(z) = I(Li2(z) + arg(1− z)log|z|)

If we consider the function D̃(z0, z1, z2, z3) = D( z0−z2
z0−z3

z1−z3
z1−z2

) This function, called the Bloch-
Wigner function has some interesting properties. It is an analytic extension of the imaginary
part of Li2. To be more specific, D(z) is continuous on all of C and furthermore it is an-
alytic on P 1(C) \ {0, 1,∞} One of the main advantages to using D(z) is that equivelance
between D(z), D(1

z
) and D(1 − z) loses the elementary terms and we have the formulation

D(z̄) = −D(z) Another property that comes from this function is that all the One of which
is that it can be interpreted as the volume of a hyperbolic ideal tetrahedron. (i.e a tetra-
hedron in with all vertices in P1(C)). However we can preform actions from SL2(C), which
are isometries on hyperbolic space, to move three of the points to 0, 1,∞ and z to simply
the volume to D(z). Tetrahedra are the foundation of manifolds and so understanding them
allows us to better understand 3- manifolds in general.
To prove this, following [Mil82] we will consider a new function λ(θ), which is a slight mod-
ification of the Lobachevsky function, but we will still keep the name, we will then calculate
the volume for a specific type of simplex and show that the volume of our tetrahedron can
be written as a sum of the volumes of these simplices. First, the lobochevsky function:

λ(θ) = −
∫ θ

0

log|2sin(z)|dz

Proposition 4.1. ILi2(e
2iθ) = 2λ(θ)

Proof. Consider the integral form of the dilogarithm as in (1) and make the substitution u
= e2iθ for when |u| ≤ 1 . The integrand then becomes

π − 2θ − 2πilog(2 sin(θ))dθ

for 0 < θ < π Then, if we integrate from 0 to θ we get that

Li2(e
2iθ)− Li2(1) = θ(π − θ) + 2iλ(θ)

If we consider only the imaginary parts of both sides we have that ILi2(e
2iθ) = 2λ(θ) □
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In this way, the Lobochevsky function is a ”polarization” of our dilogarithm function. We
will find the volume of our tetrahedron in terms of angles and then ”unpolarize” the function
from Lobochevsky to get it in terms of the dilogarithm. First, though, there are two more
property of the Lobochevsky function that we will need.

Proposition 4.2. The Lobochevsky function is periodic with period π and furthermore it’s
an odd function.

Proof. Consider λ′(θ) = −2 log | sin(θ)|. The function clearly has a period of π so now all we
need to show is that two points separated by period π are the same. λ(0) is clearly 0 and
by a simple calculation, one could check that λ(π) = 0. The function is clearly odd since∫ a

0
= −

∫ −a

0
□

The next property gives us a way to simplify the theta values within a function.

Proposition 4.3.

λ(nθ) =
∑

j mod n

n(λ(θ + jπ/n))

Where we sum over all residue classes of n.

Proof. Consider the equation zn − 1 =
∏n−1

j=0 z − e2iπj/n. If we take z to be of the form e2πiu

and consider it’s imaginary component we get

2sinnu =
n−1∏
j=0

2 sin(u+ jπ/n)

Taking the logarithm, integrating and then multiplying both sides by n we get our desired
result. □

For example let’s consider λ(2θ)

λ(2θ) = λ(θ) + λ(θ + π/2)

Now we can go on to finding volumes. We will be using the upper half-plane model of
hyperbolic space for this called H3 To find the volume we will need to devise a metric for
our space. For this, it is useful to at least get some visualization of hyperbolic half plane.
In H3.Every hemisphere of radius of r from the origin corresponds to a plane of x, y, r in

euclidean space. In this model, the metric ds satisfies, ds2 = dx2+dy2+dz2

z2
and a change in

volume dV = dxdydz
z3

First consider the tetrahedron with three right angle and only one point
at infinity and the other three points lie on the unit sphere.The three right angles restrictions
is fine because any tetrahedron can be subdivided into such objects, as we shall see. This
means that we have dihedral angles between the vertical planes of α, π/2− α, γ. Now we’ll
project the points that are on the unit sphere down to the half plane. The angles on the
projected half rectangle will have angles equal to α, π/2 − α, γ.To find this tetrahedrons
volume, we can integrate over z and, for the triangle, we can parameterize the triangle by
letting 0 ≥ x ≥ γ and 0 ≥ y ≥ xtanα

V =

∫ ∫
x,y∈T

∫
z≥
√

1−x2−y2

dxdydz

z3

=

∫ ∫
T

dxdy

2(1− x2 − y2)
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Now if we set a =
√
1− x2 and we take the bounds of the triangle integral to be what we

defined before we get

V =

∫ cosγ

0

∫ x tanα

0

dxdy

2(a2 − y2)
=

∫ cosγ

0

x

4a
log

a+ x tanα

a− xtanα
=

∫ cosγ

0

dx

4a
log

acosα + x sinα

acosα− xsinα

If we set x = sinθ, then a =cos θ and dx = −adθ Making this substitution into the previous
equation we get that

(2) V = −1

4

∫ γ

π/2

log(
2sin(θ + a)

2sin(θ − a)
)dθ = −1

4

∫ γ

π/2

log(2sin(θ + a)− 2sin(θ − a))dθ

Which lends us to, since, by 4.2 λ(π/2− α) = −λ(π/2 + α)

1

4
λ(γ + α)− λ(γ − α) + 2λ(π/2− α)

Extending another point to infinity, which can be visualized as moving a point to the in-
tersection between the plane and the unit sphere, we get that α = γ. Leading to the
simplifaction:

1

4
λ(2α) + 2λ(π/2− α)

by the Lobochevsky double angle formula:

λ(2α) = λ(α) + λ(α + π/2)

and by letting λ(π/2 − α) = −λ(π/2 + α) we can further simplify the volume of our tetra-
hedron to just

1

2
λ(α)

. Now, to see how an arbitrary ideal simplex decomposes into the aforementioned ones.
First, consider a simplex in H3 and move one point to infinity and put the base all on the
unit sphere. Then drop a perpendicular line l from the point at infinity down to the base
at point x and draw lines from x to be perpendicular lines to the edges of the base and
then connect x to the vertices. Projecting from the unit sphere to the (x, y) gives a triangle
inscribed in a circle with the point x at the center. Then a quick check of the angles shows
that we have the simplices with three right angles and two points at infinity.
With this, we have a subdivision of our ideal tetrahedron with dihedral angles α, β, γ into
two 6 tetrahedra consisting of pairs of tetrahedrons with the afore mentioned angle as their
discernment giving us that

(3) V = 2(1/2λ(α) + 1/2λ(β) + 1/2λ(γ))

One thing to note is that for z = e2iθ D(z) = I(Li2(z)) since |z| = 1. From this we get that

V = D(z1) +D(z2) + d(z3)

how this can be converted to D̃(z1, z2, z3, z4) is a bt outside the scope of this paper. For
discussions of Dk(z) the generilized version of D(z) see [Zag07]
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