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1 Introduction

One of the most important analytical functions is ζ(s). It is defined with the
domain of the complex plane and is a special case of Dirichlet Series given by

ζ(s) =

∞∑
n=1

1

ns
.

Leonhard Euler first proved that if n is a positive integer, then ζ(2n) =
p

q
π2n,

for a rational number
p

q
, which led to the proof of the irrationality of ζ(2n) due

to the fact that all powers of π are irrational.

No formula exists for the values of ζ(2n+1), so it is still open as to whether
or not these values are irrational. However, Roger Apery first outlined a proof
in 1978 with a proof that ζ(3) is irrational. Several more alternative proofs have
been given since then.

Though not much more is known for exactly which values of ζ(2n + 1) are
irrational, results have been shown on irrationality of subsets of these numbers.
For example, it is known there exist infinitely many n such that ζ(2n + 1) is
irrational, and at least one of ζ(5), ζ(7), ζ(9), ζ(11) is as well.

Apery’s Theorem states the claim that ζ(3) is irrational. We will call upon
the work of Alfred van der Poorten to prove Apery’s Theorem.
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2 Proof

The main part of Apery’s original proof relies on the following irrationality
criterion.

Definition 2.1 (Dirichlet Irrationaliy Criterion). If there exists a positive con-

stant δ and sequences of integers {pn}, {qn} such that
pn
qn

̸= β, and

∣∣∣∣β − pn
qn

∣∣∣∣ < 1

q1+δn

for all positive integers n, then β is irrational.

With this in mind, construct the following functions.

Definition 2.2. Let

bn =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

, an =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

cn,k,

where

cn,k =

n∑
m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) .
Then a0 = 0, a1 = 6, b0 = 1, b1 = 5, and each sequence {an}, {bn} satisfies

the recurrence relation given by

n3un + (n− 1)3un−2 = (34n3 − 51n2 + 27n− 5)un−1.

To do the proof, we must show that
an
bn

approaches ζ(3) fast enough to

conclude the irrationality of ζ(3), using the Dirichlet irrationality criterion. But
first to apply this we must find the denominators of the sequences {an} and
{bn}.

We can clearly see from the definition above that bn is an integer for all n.
However, an isn’t as simple.

Lemma 2.1. We have that 2(lcm(1, 2, · · ·n))3cn,k
(
n+k
k

)
is an integer.

Proof. Clearly the left term of cn,k is divisible by lcm(1, 2, · · · , n)3, so we only
need to consider this for the right-side denominator. In order to do this, we will
compare the number of times a given prime p divides the denominator divided

2



by 2
(
n+k
k

)
to the number of times it divides lcm(1, 2, · · · , n)3(notice the divided

by 2
(
n+k
k

)
in the denominator comes from multiplying the entire expression by

that value). We will use the notation νp(x) to denote the largest power of p
dividing x.

First notice that the value of νp(lcm(1, 2, · · · , n)3) = 3 logp n. Next, consider

the value of νp
((
a
b

))
for values a and b. To bound this, we will use Legendre’s

formula.

Definition 2.3 (Legendre’s formula). For any prime number p and positive

integer n, we have that νp(n!) =
∑
i≥1

⌊
n

pi

⌋
.

From this, we have that

νp

((
a

b

))
= νp

(
a!

b!(a− b)!

)
= νp(a!)−νp(b!)−νp((a−b)!) =

∑
i≥1

(⌊
a

pi

⌋
−
⌊
b

pi

⌋
−
⌊
a− b

pi

⌋)
.

For all i > logp a, the summand is 0 due to the fact that all the terms are

as well. Then for all i ≤ νp(b), notice that

⌊
b

pi

⌋
+

⌊
a− b

pi

⌋
=

b

pi
+

⌊
a− b

pi

⌋
=⌊

a− b+ b

pi

⌋
=

⌊
a

pi

⌋
. Thus in this case, the summand is also 0. Thus we have

that νp
((
a
b

))
≤ logp a− νp(b).

Now we will use the identity

(
n+m
m

)(
n+k
k

) =

(
k
m

)(
n+k
k−m

) . We have that

νp

(
m3
(
n
m

)(
n+m
m

)(
n+k
k

) )
= νp

(
m3
(
n
m

)(
k
m

)(
n+k
k−m

) )

≤ νp

(
m3

(
n

m

)(
k

m

))
≤ 3νp(m) + logp n+ logp k − 2νp(m).

= νp(m) + logp n+ logp k.

Then because m ≤ k ≤ n, we can see that each of those terms is less than or
equal to logp n. So we have shown the number of times an arbitrary prime p

divides the denominator of 2cn,k
(
n+k
k

)
is less than the number of times it divides

lcm(1, 2, · · · , n)3, thus showing that 2(lcm(1, 2, · · ·n))3cn,k
(
n+k
k

)
∈ Z.
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Therefore since ak has a factor of cn,k
(
n+k
k

)
in each term, we know it is

rational with a denominator dividing 2lcm(1, 2, · · · , n)3.

Now, it is known in the field of number theory that log(lcm(1, 2, · · · , n)) =∑
x≤n

Λ(x) = ψ(n), where Λ(x) is the function that returns log p when x is a

perfect power of p and 0 otherwise. It has also been shown that ψ(n)n is bounded,

meaning that ψ(n) = O(n), and lcm(1, 2, · · · , n) = eψ(n) = O(en), which is
necessary later in the proof.

Next, notice that multiplying the recursive relation for an by bn−1 we have

n3anbn−1 − (34n3 − 51n2 + 27n− 5)an−1bn−1 + (n− 1)3an−2bn−1 = 0.

Doing a similar multiplication for the recursive relation for bn also gives

n3bnan−1 − (34n3 − 51n2 + 27n− 5)bn−1an−1 + (n− 1)3bn−2an−1 = 0.

Subtracting these two equations, we have that n3(anbn−1 − an−1bn)− (n−
1)3(an−1bn−2 − an−2bn−1) = 0.

Now, define F (n) = anbn−1 − an−1bn. Then F (1) = 6, and F (n) =
(n− 1)3

n3
F (n− 1). This recurrence leads us to discover the closed form F (n) =

anbn−1 − an−1bn =
6

n3
.

From this, Apery’s next claim was that∣∣∣∣ζ(3)− an
bn

∣∣∣∣ = ∞∑
k=n+1

6

k3bkbk−1
.

To get this, define χn = ζ(3)− an
bn
. We have that χ∞ = 0. We also have

χk − χk−1 =
ak−1

bk−1
− ak
bk

=
akbk−1 − ak−1bk

bkbk−1
= − 6

k3bkbk−1
.

Apery’s claim follows simply from here by summing this value up from k = n+1
to ∞.

Then, since bk is always increasing, we have that

∣∣∣∣ζ(3)− an
bn

∣∣∣∣ ≤ ∞∑
k=n+1

6

k3b2k−1

≤

b−2
n · 6 · ζ(3), so ζ(3)− an

bn
= O(b−2

n ).
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We can also approximate bn using it’s recursive formula. Notice that dividing
it by n3 and getting rid of the negligible terms yields bn − 34bn−1 + bn−2 = 0,
and we have that (1 ±

√
2)4 are the solutions to this characteristic equation.

This leads to the fact that bn = O(αn), where α = (1 +
√
2)4.

From this we also have that ζ(3)− an
bn

= O(α−2n).

Now we are at the closing part of the proof, and wish to apply the Dirichlet
irrationality criterion. However, we must note that the sequence {an} does not
consist of integers. To fix this, define the new functions

pn = 2(lcm(1, 2, · · · , n))3an, qn = 2(lcm(1, 2, · · · , n))3bn,

so that we have pn, qn ∈ Z.

Thus qn = O(αn · e3n), using our bound earlier for lcm(1, 2, · · · , n). Finally,
we have that

ζ(3)− pn
qn

= O(α−2n) = O

(
1

q1+δn

)
,

where δ =
logα− 3

logα+ 3
> 0. Therefore we have that from the irrationality criterion

that ζ(3) is irrational, completing the proof.
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3 Apery’s formula for ζ(3)

During his work on proving the irrationality of ζ(3), Apery also discovered the
formula

ζ(3) =
5

2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) .
Though this didn’t directly apply to his original proof, it is still a handy formula
to work with. We shall now prove this result.

Lemma 3.1. Given a sequence a1, a2, · · · , ar, we have that

a1a2 · · · ar
x(x+ a1) · · · (x+ ar)

+
r∑
i=0

a1a2 · · · ai−1

(x+ a1)(x+ a2) · · · (x+ ai)
=

1

x

Proof. Consider the partial fraction decomposition

1

x
=

1

x+ a1
+

a1
x(x+ a1)

,

which is our required result for r = 1. We will now show with induction on r
that the given formula is true. Assume that

f(x) =
a1a2 · · · ar−1

x(x+ a1) · · · (x+ ar−1)
+

r−1∑
i=0

a1a2 · · · ai−1

(x+ a1)(x+ a2) · · · (x+ ai)
=

1

x
.

Then we have that

a1a2 · · · ar
x(x+ a1) · · · (x+ ar)

+

r∑
i=0

a1a2 · · · ai−1

(x+ a1)(x+ a2) · · · (x+ ai)

= f(x) +
a1a2 · · · ar

x(x+ a1) · · · (x+ ar)
+

a1a2 · · · ar−1

(x+ a1) · · · (x+ ar)
− a1a2 · · · ar−1

x(x+ a1) · · · (x+ ar−1)

=
1

x
+

(a1a2 · · · ar−1)(ar + x− (x+ ar))

x(x+ a1) · · · (x+ ar)

=
1

x
.

Thus the proof is done.

Now we will utilize this to find a form for ζ(3).

Substitute x = n2, ai = −k2, and r = n − 1 into Lemma 3.1 such that we
have
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n−1∑
i=0

(−1)i−1(k − 1)!2

(n2 − 12)(n2 − 22) · · · (n2 − k2)
=

1

n2
− (−1)n−1(n− 1)!2

n2(n2 − 12) · · · (n2 − (n− 1)2)
.

Notice that

(n2 − 12) · · · (n2 − (n− 1)2)

(n− 1)!2
=

1 · 2 · · · (n− 1) · (n+ 1) · · · (2n− 1)

(n− 1)!2
=

(2n)!

2 · n!2
=

(
2n
n

)
2
.

Substituting this back in yields that our last expression is equal to
1

n2
−

2(−1)n−1

n2
(
2n
n

) . Following along the footsteps of Apery’s proof, our next step is to

define the function

ϵn,k =
1

2
· k!

2(n− k)!

k3(n+ k)!
,

as this satisfies the relation (−1)kn(ϵn,k−ϵn−1,k) =
(−1)i−1(k − 1)!2

(n2 − 12)(n2 − 22) · · · (n2 − k2)
.

Then we have that

N∑
n=1

n−1∑
i=1

(−1)k(ϵn,k − ϵn−1,k) =

N∑
n=1

1

n3
− 2

N∑
n=1

(−1)n−1

n3
(
2n
n

)
=

N∑
k=1

(−1)k(ϵ
N,k

− ϵ
k,k

)

=

N∑
k=1

(−1)k

2k3
(
N+k
k

)(
N
k

) + 1

2

N∑
k=1

(−1)k−1

k3
(
2k
k

) .

Thus we have that

N∑
n=1

1

n3
−2

N∑
n=1

(−1)n−1

n3
(
2n
n

) =

N∑
k=1

(−1)k

2k3
(
N+k
k

)(
N
k

)+1

2

N∑
k=1

(−1)k−1

k3
(
2k
k

) .
Taking the limit as N approaches infinity makes the first term on the right ap-
proach 0, and the first term on the left becomes ζ(3). We can then move all
terms other than ζ(3) to the right and change our summation variables which
yields

ζ(3) =
5

2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) .
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4 An Alternative Proof by Frits Beukers

In 1979, Frits Beukers found an alternative proof of Apery’s Theorem using
integrals involving the shifted Legendre Polynomials P̃n(x). Roughly speaking,
Beukers showed that∫ 1

0

∫ 1

0

− log(xy)

1− xy
P̃n(x)P̃n(y) dx dy =

An +Bnζ(3)

lcm(1, 2 · · · , n)3

for integer sequences An and Bn. Then assuming that ζ(3) was rational with

denominator b, he was able to show that |An+Bnζ(3)| <
1

b
for sufficiently large

n, contradicting the fact it was rational.

5 More on the ζ function

In 1737, Euler was able to connect the Zeta function to prime numbers by using
the Euler Product identity

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
.

Notice that at s = 1, the left side diverges, while the right side is the product

of all values of
p− 1

p
. If you take the natural logarithm of both sides, since

log

(
p− 1

p

)
≈ 1

p
, this can be used to show that the sum of the reciprocals of

all primes diverges.

There have also been many found analytical continuations of the zeta func-
tion. Using the usual summation definition, it is true that ζ(s) only converges
for s with ℜ(s) > 1. These continuations are alternate forms of ζ(s) with larger
ranges of convergence. For example, the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s),

where Γ(z) =
∫∞
0
e−ttz−1 dt, can be used to extend the range of convergence of

ζ(s) to C\{1}. At s = 1, the sum is the harmonic series which diverges to +∞.

One of the most famous unsolved problems in mathematics is the Reimann

hypothesis, conjecturing that all non-trivial zeros of ζ(s) satisfy ℜ(s) = 1

2
(We

consider the trivial zeros to be all negative even integers).
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