Character Sums

Grace Howard

June 2024

Definition 0.1. Let *n* be a positive integer. For $q \in \{0, 1, 2, ..., n - 1\}$, *q* is a quadratic residue modulo *n* if there exists an integer *x* such that $x^2 \equiv q \pmod{n}$. Otherwise, *q* is a quadratic non-residue.

Example

For n = 5,

- $0^2 = 0 \equiv 0 \pmod{5}$,
- $1^2 = 1 \equiv 1 \pmod{5}$,
- $2^2 = 4 \equiv 1 \pmod{5}$,
- $3^2 = 9 \equiv 4 \pmod{5}$,

and

• $4^2 = 16 \equiv 1 \pmod{5}$.

So, the quadratic residues are $\{0, 1, 4\}$ and the quadratic non- residues are $\{2, 3\}$.

Theorem 0.1. For n = p, where p is an odd prime, there are $\frac{p+1}{2}$ quadratic residues and $\frac{p-1}{2}$ quadratic non-residues.

Proof. Firstly, 0 is always a quadratic residue modulo p since $0^2 = 0 \equiv 0 \pmod{p}$. Thus, there is a need to prove that of the p-1 integers relatively prime to p, $\frac{p-1}{2}$ of them are quadratic residues and $\frac{p-1}{2}$ of them are not. Each congruence $x^2 \equiv a \pmod{p}$ has either two or zero solutions and the total set

of solutions has size p-1. So, since every number has exactly one square it solves exactly one of these congruences. From this, it must be the case that $\frac{p-1}{2}$ of the congruences have 2 solutions each and the other $\frac{p-1}{2}$ of them have no solutions.

Definition 0.2. A Dirichlet character modulo q is a function $\chi : \mathbb{Z} \to \mathbb{C}$ such that χ satisfies:

- For all $n \in \mathbb{Z}$, $\chi(n+q) = \chi(n)$,
- for all $n, k \in \mathbb{Z}, \chi(nk) = \chi(n)\chi(k),$

and

• $\chi(n) \neq 0$ if and only if gcd(n,q) = 1.

Definition 0.3. The principal character modulo q is the Dirichlet character χ_1 such that $\chi_1(n) = 1$ if and only if gcd(n, q) = 1.

Definition 0.4. The Legendre symbol is a function of a and p, where p is an odd prime, defined as

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } a \equiv 0 \pmod{p} \\ 1 & \text{if } a \text{ is a square } \mod{p} \\ -1 & \text{if } a \text{ is a quadratic non-residue } \mod{p}. \end{cases}$$

It has the following properties:

•
$$\left(\frac{a}{p}\right) = \left(\frac{a+p}{p}\right)$$
 for all a ,
• $\left(\frac{a}{p}\right) \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$ for all a, b ,

and

•
$$\left(\frac{a}{p}\right) \neq 0$$
 if and only if $gcd(a, p) = 1$.

By definition, the Legendre symbol is a Dirichlet character.

Let g(p) = m be the least quadratic nonresidue modulo p. Suppose $\chi(a) = \left(\frac{a}{p}\right)$. Then, $\chi(n) = 1$ for n = 1, 2, ..., m - 1 and $\chi(m) = -1$. Therefore,

$$\sum_{i=1}^{m} \chi(m) = \chi(1) + \chi(2) + \dots + \chi(m-1) + \chi(m) = m - 2$$

and

$$\sum_{i=1}^{k} \chi(i) = k$$

for all k < m.

Theorem 0.2. Let q be an integer with $q \ge 2$ and let χ be a non-principal character modulo q. For integers M, N with $N \ge 1$,

$$\left|\sum_{a=M+1}^{M+N} \chi(a)\right| < 3\sqrt{q}\log q.$$

The sum $\sum_{a=M+1}^{M+N} \chi(a)$ is at most N. So, this estimate is non-trivial only if $N > 3\sqrt{q} \log q$. The proof of this theorem relies on two lemmas.

Definition 0.5. $\overline{\chi(a)}$ is the complex conjugate of $\chi(a)$.

Definition 0.6. Let $q \in \mathbb{Z}$ with $q \geq 2$. For a character $\chi \mod q$ and for $b \in \mathbb{Z}$, define the Gauss sum

$$\tau(b,\chi) = \sum_{a \in S_q} \chi(a) e^{2\pi i b a/q}$$

where S_q is a full system of representative modulo q.

Lemma 0.3. Let $q \in \mathbb{Z}$ with $q \geq 2$ and let χ be a character modulo q. Additionally, let $b \in \mathbb{Z}$. Then,

- If gcd(b,q) = 1, then $\tau(b,\chi) = \overline{\chi(b)} \cdot \tau(1,\chi)$.
- If gcd(b,q) > 1 and χ is primitive, then $\tau(b,\chi) = \overline{\chi(b)} \cdot \tau(1,\chi) = 0$.

Lemma 0.4. Let 0 < x < 1. Then

$$\left|\sum_{a=M+1}^{M+N} e^{2\pi i a x}\right| \le \frac{1}{2} \max\left(\frac{1}{x}, \frac{1}{1-x}\right).$$

Proof. By the formula for the sum of a geometric series,

$$\sum_{a=M+1}^{M+N} e^{2\pi i a x} = e^{2(M+1)\pi i x} \cdot \frac{e^{2\pi i N x} - 1}{e^{2\pi i x} - 1}$$
$$= e^{\pi i (2M+N+1)x} \left(\frac{e^{\pi i N x} - e^{-(\pi i N x)}}{e^{\pi i x} - e^{-(\pi i x)}}\right)$$
$$= e^{\pi i (2M+N+1)x} \frac{\sin(N\pi x)}{\sin(\pi x)}.$$

Firstly, $|e^{\pi y i}| = 1$ and $|\sin(\pi y)| \le 1$ for every $y \in \mathbb{R}$. Additionally, consider that

$$\sin(\pi x) \ge 2\min(x, 1-x)$$

for every x with $0 \le x \le 1$.

Definition 0.7. Suppose χ is a character mod q and χ' is a character mod d, where d > 0 is a divisor of q. Then, χ is induced by χ' if $\chi(a) = \chi'(a)$ for every $a \in \mathbb{Z}$ with gcd(a,q) = 1.

Definition 0.8. The conductor of χ is the smallest positive divisor d of q such that χ is induced by a character modulo d.

Proof of Theorem 1.2. Suppose that χ is a primitive character modulo q. Then, by

$$\sum_{a=M+1}^{M+N} \overline{\chi(a)} = \tau(1,\chi)^{-1} \sum_{a=M+1}^{M+N} \tau(a,\chi)$$
$$= \tau(1,\chi)^{-1} \sum_{a=M+1}^{M+N} \left[\sum_{n=1}^{q-1} \chi(n) e^{2\pi i a \frac{n}{q}} \right] = \tau(1,\chi)^{-1} \sum_{n=1}^{q-1} \chi(n) \sum_{a=M+1}^{M+N} e^{2\pi i a \frac{n}{q}}.$$

Since $|\chi(n)| \leq 1$ for all n,

$$\left|\sum_{a=M+1}^{M+N} \chi(a)\right| \le \frac{1}{\sqrt{q}} \sum_{n=1}^{q-1} \frac{1}{2} \max\left(\frac{1}{\frac{n}{q}}, \frac{1}{1-\frac{n}{q}}\right) \le \sqrt{q} \sum_{n=1}^{\lfloor \frac{q}{2} \rfloor} \frac{1}{n}.$$

By inspection,

$$\left|\sum_{a=M+1}^{M+N} \chi(a)\right| < \frac{3}{2}\sqrt{q}\log q$$

For non- primitive characters, let χ be a non-primitive, non-principal character modulo q and let f be the conductor of χ . Then, χ is induced by a primitive character χ' modulo f. Let $q = f \cdot q'$. If gcd(a, q') = 1, then gcd(a, f) = gcd(a, q). From this, $\chi(a) = \chi'(a)$. If gcd(a, q') > 1, then $\chi(a) = 0$. From this,

$$\sum_{a=M+1}^{M+N} \chi(a) = \sum_{\substack{a=M+1\\ \gcd(a,q')=1}}^{M+N} \chi'(a).$$

Using properties of μ ,

$$\sum_{a=M+1}^{M+N} \chi(a) = \sum_{a=M+1}^{M+N} \chi'(a) \sum_{\substack{d|q',d|a\\ d|q',d|a}} \mu(d)$$
$$= \sum_{\substack{d|q'\\ a\equiv 0 \pmod{d}}} \mu(d) \sum_{\substack{a\equiv M+1\\ a\equiv 0 \pmod{d}}} \chi'(a)$$
$$= \sum_{\substack{d|q'\\ d|q'}} \mu(d)\chi'(d) \sum_{\substack{\frac{M+1}{d} \le d_1 \le \frac{M+N}{d}}} \chi'(d) 1)$$

where $a = dd_1$. By the above lemma, the inner sum has absolute value at most $\frac{3}{2}\sqrt{f}\log f$. From this,

$$\left|\sum_{a=M+1}^{M+N} \chi(a)\right| \le \frac{3}{2}\tau(q')\sqrt{f}\log f$$

where $\tau(q')$ is the number of divisors of q'. Then,

$$\left|\sum_{a=M+1}^{M+N} \chi(a)\right| < 2\sqrt{q'} \cdot \frac{3}{2}\sqrt{f} \log f \le 3\sqrt{q} \log q.$$