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1. Introduction

An important result concerning primes in any arithmetic progression is Dirichlet’s theorem which was
proven by Dirichlet in 1837.

Theorem 1.1 (Dirichlet). Let a and m be relatively prime integers. Then there are infinitely many primes
p such that p ≡ a (mod m).

Chowla conjectured the following stronger statement in 1920.

Conjecture 1.2 (Chowla). There exists infinitely many integers n such that the consecutive primes pn and
pn+1 are congruent to a (mod m) where a and m are relatively prime.

In this paper, we will review the proof of a theorem, proven by Shiu in 1997 [1], which is a generalization
of Dirichlet’s theorem.

Theorem 1.3 (Shiu). Let a and m be relatively prime integers. For every positive integer k, there exists a
string of k consecutive primes pn, . . . , pn+k for some positive integer n such that

pn ≡ pn+1 ≡ . . . ≡ pn+k ≡ a (mod m).

Example 1.4. Consider the arithmetic progression of integers congruent to 2 (mod 3). This contains

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, . . .

We can immediately see that the prime 2 forms a string of length 1. The first string of length 2 is formed
by the consecutive primes 23 and 29 which are both congruent to 2 (mod 3). The consecutive primes 47,
53, and 59 are all congruent to 2 (mod 3) and form a string of length 3. The first string of length 4 appears
much later, with consecutive primes 251, 257, 263, and 269 that are all congruent to 2 (mod 3). Note that
the primes 5, 11, 17, 23, and 29 do not form a string of length 5 since, although they are all congruent to 2
(mod 3), they are not consecutive.

The proof of Theorem 1.3 is based on Maier’s matrix method, described in [2]. Shiu also proved another
theorem which is an extension of the first and states that there are infinitely many strings of length k of
consecutive primes in an arithmetic progression. We refer the reader to [1] for the proof of this theorem.

Theorem 1.5. Let a and m be relatively prime integers and k be a positive integer. There exists infinitely
many positive integers n such that the primes pn, . . . , pn+k satisfy

pn ≡ pn+1 ≡ . . . ≡ pn+k ≡ a (mod m).

To prove Theorem 1.3, we will prove that we can create a lower bound on the length k of the longest string
of consecutive primes less than some large x. It turns out that there is a stronger lower bound whenever a
is in either of the following sets:

A+ := {a : a ≡ 1 (mod p) for all p|m}

and

A− := {a : a ≡ −1 (mod p) for all p|m},
where a and m are relatively prime integers. The notation A± refers to the union of the two sets. We can
now restate Theorem 1.3.
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Theorem 1.6. For any relatively prime positive integers a and m, and some large x, there is a string of k
primes pn, . . . , pn+k, for some positive integer n, satisfying

pn ≡ pn+1 ≡ . . . ≡ pn+k ≡ a (mod m),

where pn+k < x and

k ≫
(
log log x log log log log x

(log log log x)2

)1/ϕ(m)

.

Further, for each a ∈ A±, there exists a string of k primes pn, . . . , pn+k, for some positive integer n, satisfying

pn ≡ pn+1 ≡ . . . ≡ pn+k ≡ a (mod m),

where pn+k < x and

k ≫
(

log log x

log log log x

)1/ϕ(m)

.

2. Background

We will state some important lemmas that we will be using in the proof of Theorem 1.6. First, we need
the following definition.

Definition 2.1. For any positive integer y and prime q, define P (y, q) to be

P (y, q) := m
∏

p≤y,p̸=q

p.

Lemma 2.2. There is a constant C such that for every positive integer m and large x, there is a positive
integer y and prime q with q ≫ log y such that

x < P (y, q) ≪ x(log x)2,

and no L-function modulo P (y, q) has a zero in the region

1 ≥ Re(s) > 1− C

logP (y, q)(Im(s) + 1)
. (1)

We refer the reader to [1] for the proof of this lemma and the next two, and [3] for more on L-functions.

Lemma 2.3. Choose a constant C and positive integer m′ so that no L-functions modulo m′ have a zero in
the region

1 ≥ Re(s) > 1− C

logm′(Im(s) + 1)
. (2)

There exists a constant D and constants C1 and C2 such that the inequality

C1

(
x

ϕ(m′) log x

)
≤ π(x;m′, a′) ≤ C2

(
x

ϕ(m′) log x

)
is true for all x ≥ m′D and a′ relatively prime to m′.

The proof of this lemma uses the Brun-Titchmarsh inequality (see [4]) and Gallagher’s Theorem (stated
and proved in [2]).

Lemma 2.4. Let m be a positive integer. Define K(x) to be the set of positive integers n ≤ x such that all
prime factors of n are congruent to 1 (mod m). As x approaches ∞,

|K(x)| =
(
c0 +O

(
1

log x

))
x

log x
(log x)1/ϕ(m),

where

c0 :=
1

Γ(1/ϕ(m))
lim
s→1

(s− 1)1/ϕ(m)
∏

p≡1 (mod m)

(
1− 1

ps

)−1

.
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3. Consecutive primes congruent to a (mod m)

Proof of Theorem 1.6. By Lemma 2.2, for positive integers a,m, x and large D, we can choose y and q so
that

x1/D ≤ P (y, q) ≪ x1/D(log x)2,

and no L-function modulo P (y, q) has an exceptional zero. We now define two sets consisting of a subset of
the primes less than y satisfying specific conditions. First, if z < y and t ≤ √

yz, for all values of a, let

R := {p ≤ y : p ̸= q, p ̸≡ 1, a (mod m)}
∪ {t ≤ p ≤ y : p ̸= q, p ≡ 1 (mod m)}
∪ {p ≤ yz/t : p ̸= q, p ≡ a (mod m)}.

Next, for a ∈ A±, let

R0 := {p ≤ y : p ̸= q, p ̸≡ 1 (mod m)}.
Define the following functions:

Q(y) := m
∏
p∈R

p,

and

Q0(y) := m
∏
p∈R0

p.

The primes in R and R0 are a subset of the primes less than y, so Q(y) and Q0(y) divide P (y, q). We
also note that logP (y, q) < 3 logQ(y), 3 logQ0(y). This implies that the regions

1 ≥ Re(s) > 1− C

3 logQ(y)(Im(s) + 1)
(3)

and

1 ≥ Re(s) > 1− C

3 logQ0(y)(Im(s) + 1)
(4)

are contained in the region given by (1). If there is an L-function modulo Q(y) or Q0(y) with a zero in
the region given by (3) or (4) respectively, then the corresponding L-function modulo P (y, q) would contain
a zero at the same point in the region given by (1). Since there is no L-function modulo P (y, q) with a zero
in this region, there must not be any L-functions modulo Q(y) or Q0(y) with a zero in the regions given by
(3) and (4). Note that Q(y) and Q0(y) satisfy

x1/2D < Q(y), Q0(y) < x1/D.

We now use Maier’s matrix method to find strings of consecutive primes. At this point, we will split the
proof into two parts, the first (Part 1) for all values of a and the second (Part 2) for when a ∈ A±.

(Part 1): Let a and m be any relatively prime positive integers. Let I be an interval with I = (0, yz].
Define M to be the set of elements in the array (or matrix)

1 +Q(y) 2 +Q(y) . . . yz +Q(y)
1 + 2Q(y) 2 + 2Q(y) . . . yz + 2Q(y)

...
...

. . .
...

1 +Q(y)D 2 +Q(y)D . . . yz +Q(y)D

We will refer to the rows of this array as intervals. We are looking for strings of consecutive primes
congruent to a (mod m) which are in the set

P1 := {p ∈ M : p ≡ a (mod m) where p is prime}.

Note that all other primes are in the set

P2 := {p ∈ M : p ̸≡ a (mod m) where p is prime}.
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We will find a lower bound for the size of P1 and an upper bound for the size of P2, since the larger |P1| is
and the smaller |P2| is, the more likely we are to find longer strings. To do this, consider the sets S and T ,
where

S := {i ∈ I : gcd(i, Q(y)) = 1, i ≡ a (mod m)},

T := {i ∈ I : gcd(i, Q(y)) = 1, i ̸≡ a (mod m)}.

By Lemma 2.4, the lower bound for |S| is

|S| ≫ yz(log t)1/ϕ(m)

log y
,

and the upper bound for |T | is

|T | ≪ yz(log z)1/ϕ(m)

log y
.

By Lemma 2.3, we can bound |P1| below by

|P1| ≫ |S| x

ϕ(Q(y)) log x
,

and |P2| above by

|P2| ≪ |T | x

ϕ(Q(y)) log x
,

where x ≥ Q(y)D. Define M ′ to be the union of the intervals in the array that contain primes in P1. There
are two possible cases:

• Case I: Interval I0 exists in M ′ in which the number of primes in P1 is at least |P1|/2|P2| times the
number of primes in P2. So

|I0 ∩ P1| ≥
1

2

|P1|
|P2|

|I0 ∩ P2|.

• Case II: At least 1/2 the primes in P1 are outside M ′. So

|(M \M ′) ∩ P1| ≥
1

2
|P1|.

We can visualize this using Figure 1. The outer gray square consists of the elements of M and the blue
rectangles inside it consist of the elements of M ′ (the elements in all the intervals that contain elements of
P2). The elements of interval I0 are in the yellow rectangle.

Figure 1. Diagram of the elements of the array and the interval I0.
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According to Case I, in the yellow rectangle, the number of primes in P1 is much more than the number
of primes in P2, by a factor of |P1|/2|P2|. From Case II, at least 1/2 the primes in P1 are in the gray sections
of the outer square. If both cases are not true, we get the following contradiction:

|P1| = |P1 ∩ (M \M ′)|+ |P1 ∩M ′|

= |P1 ∩ (M \M ′)|+
∑

I0⊆M ′

(|P1 ∩ I0|)

<
|P1|
2

+

(
|P1|
2|P2|

) ∑
I0⊆M ′

(|P2 ∩ I0|)

=

(
|P1||P2|
2|P2|

)
+

|P1|
2

= |P1|.

Therefore either Case I or II must be true. For Case I, by the Pigeonhole Principle, since the number
of primes in I0 that are in P1 to the number of primes in I0 that are in P2 is |P1|/|P2|, the interval I0
must contain a string of length k of primes in P1 so that k ≫ |P1|/|P2|. Similarly, for Case II, there are
up to x/Q(y) intervals outside M ′ and one of these intervals must contain a string of length k so that
k ≫ Q(y)|P1|/x. Since

Q(y)

ϕ(Q(y))
=

m

ϕ(m)

∏
p∈R

p

p− 1
=

m

ϕ(m)

∏
p∈R

(
1− 1

p

)−1

,

we find that Q(y)/ϕ(Q(y)) ≫ (log t)1/ϕ(m)/ log y using a generalization of Merten’s Theorem. Since log x ≪
Q(y) ≪ y, we get

|P1|Q(y)

x
≫ yz

log x
≫ z.

We can choose a lower bound for the length k of a string of consecutive primes congruent to a (mod m) in
the set M that satisfies both cases, so

k ≫ min

(
|P1|
|P2|

, z

)
. (5)

Using the lower bounds for |S| and |P1|, and upper bounds for |T | and |P2|, we see that

|P1| ≫ |S| x

ϕ(Q(y)) log x
≫

(
yz(log t)1/ϕ(m)

log y

)(
x

ϕ(Q(y)) log x

)
,

and

|P2| ≪ |T | x

ϕ(Q(y)) log x
≪

(
yz(log z)1/ϕ(m)

log y

)(
x

ϕ(Q(y)) log x

)
.

Therefore (5) is equivalent to

k ≫ min

(
yz(log t)1/ϕ(m)

yz(log z)1/ϕ(m)
, z

)
= min

((
log t

log z

)1ϕ(m)

, z

)
.

Since z < y, t ≤ √
yz, and log x < y, let z = log log x. Then we get

k ≫ min

((
log log x log log log log x

(log log log x)2

)1/ϕ(m)

, log log x

)
=

(
log log x log log log log x

(log log log x)2

)1/ϕ(m)

as desired.
(Part 2): Let a ∈ A±. Let J be defined as

J :=

{
(r1, r1 + yz] a ∈ A+,

[r2 − yz, r2) a ∈ A−,
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where r1 ≡ 0 (mod p) and r1 ≡ a− 1 (mod m) for all a ∈ A+, and r2 ≡ 0 (mod p) and r2 ≡ a+ 1 (mod m)
for all a ∈ A−. Define M0 to be the set of elements in the array

(c+ 1) +Q0(y) (c+ 2) +Q0(y) . . . (c+ yz) +Q0(y)
(c+ 1) + 2Q0(y) (c+ 2) + 2Q0(y) . . . (c+ yz) + 2Q0(y)

...
...

. . .
...

(c+ 1) +Q0(y)
D (c+ 2) +Q0(y)

D . . . (c+ yz) +Q0(y)
D

where c = r1 for a ∈ A+ and c = r2 − yz − 1 for a ∈ A−.
Define

P1 := {p ∈ M0 : p ≡ a (mod m) where p is prime},
and

P2 := {p ∈ M0 : p ̸≡ a (mod m) where p is prime}.
As in Part 1, we will find a lower bound for the size of P1 and an upper bound for the size of P2. Define the
sets S and T to be

S := {j ∈ J : gcd(j,Q(y)) = 1, j ≡ a (mod m)},

T := {j ∈ J : gcd(j,Q(y)) = 1, j ̸≡ a (mod m)}.
By Lemma 2.4, the lower bound for |S| is

|S| ≫ yz(log y)1/ϕ(m)

log y
,

and

|T | ≪ yz(log z)1/ϕ(m)

log y
.

By Lemma 2.3, we can bound |P1| below by

|P1| ≫ |S| x

ϕ(Q0(y)) log x
,

and |P2| above by

|P2| ≪ |T | x

ϕ(Q0(y)) log x
,

where x ≥ Q0(y)
D. Define M ′

0 to be the union of the intervals in the array that contain primes in P1. We
have the same two possible cases from Part 1:

• Case I: Interval I0 exists in M ′
0 in which the number of primes in P1 is at least |P1|/2|P2| times the

number of primes in P2. So

|I0 ∩ P1| ≥
1

2

|P1|
|P2|

|I0 ∩ P2|.

• Case II: At least 1/2 the primes in P1 are outside M ′
0. So

|(M0 \M ′
0) ∩ P1| ≥

1

2
|P1|.

We know that either Case I or II must be true. For Case I, the interval I0 must contain a string of length
k of primes in P1 so that k ≫ |P1|/|P2|. Similarly, for Case II, there are up to x/Q0(y) intervals outside M ′

0

and one of these intervals must contain a string of length k so that k ≫ Q0(y)|P1|/x. Since

Q0(y)

ϕ(Q0(y))
=

m

ϕ(m)

∏
p∈R0

p

p− 1
=

m

ϕ(m)

∏
p∈R0

(
1− 1

p

)−1

,

we find that Q0(y)/ϕ(Q0(y)) ≫ (log y)1/ϕ(m)/ log y using a generalization of Merten’s Theorem. Since
log x ≪ Q0(y) ≪ y, we get

|P1|Q0(y)

x
≫ yz

log x
≫ z.
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As we did in Part 1, we can choose a lower bound for the length k of a string of consecutive primes congruent
to a (mod m) in the set M0 that satisfies both cases, so

k ≫ min

(
|P1|
|P2|

, z

)
. (6)

Using the lower bounds for |S| and |P1|, and upper bounds for |T | and |P2|, we see that

|P1| ≫ |S| x

ϕ(Q0(y)) log x
≫

(
yz(log y)1/ϕ(m)

log y

)(
x

ϕ(Q0(y)) log x

)
,

and

|P2| ≪ |T | x

ϕ(Q0(y)) log x
≪

(
yz(log z)1/ϕ(m)

log y

)(
x

ϕ(Q0(y)) log x

)
.

Therefore (6) is equivalent to

k ≫ min

(
yz(log y)1/ϕ(m)

yz(log z)1/ϕ(m)
, z

)
= min

((
log y

log z

)1ϕ(m)

, z

)
.

Since z < y and log x < y, let z = log log x. Then we get

k ≫ min

((
log log x

log log log x

)1/ϕ(m)

, log log x

)
=

(
log log x

log log log x

)1/ϕ(m)

as desired.
□
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