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1 Introduction

The Riemann zeta function defined by

ζ(s) =

∞∑
n=1

1

ns

is a well-studied object in number theory owing to its deep connection to prime numbers. However, evaluating
this function at specific points is a difficult task. We know the values of the zeta function at negative numbers
(0 for even negative numbers and a rational number otherwise), as well as the values at positive even numbers
(a rational number times a power of π). However, computation of the zeta function at any odd integer > 1
has eluded us. The main topic of this expository paper–Apery’s theorem–is a step toward the computation
of these values, proving that ζ(3) is irrational.

2 Proving Apery’s theorem

Definition 2.1 (The Riemann zeta function). The Riemann zeta function (or just the zeta function) is
defined as

ζ(s) =

∞∑
n=1

1

ns
.

This formula can be extended via analytic continuation to all values of s except for 1, though this is
beyond the scope of this paper.

Theorem 2.2 (Apery’s Theorem). ζ(3) is irrational.

Our method of attack will be the following well-known irrationality criterion.

Theorem 2.3. For a real number α, if there exist integer sequences (p), (q) such that

α ̸= pn
qn

for all n and
lim

n→∞
|αqn − pn| = 0,

α is irrational.

Essentially, rational numbers can approximate irrational numbers much better than they can approximate
rational numbers.

Let us start by rewriting ζ(3):

Theorem 2.4. We have

ζ(3) =
5

2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) .

We will require use of the following lemma:
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Lemma 2.5. For a sequence a1, a2, . . . , ak, we have

k∑
i=1

∏
1≤j≤i−1 aj∏

1≤j≤i(x+ aj)
=

1

x
−

∏
1≤i≤k ai

x
∏

1≤i≤k(x+ ai)
.

Proof. We will show this via induction. When k = 0, both sides are equal to 0. Then, if we assume the
result for k − 1 ≥ 0, for k, it suffices to show:∏

1≤i≤k−1 ai∏
1≤i≤k(x+ ai)

=

∏
1≤i≤k−1 ai

x
∏

1≤i≤k−1(x+ ai)
−

∏
1≤i≤k ai

x
∏

1≤i≤k(x+ ai)
.

We have ∏
1≤i≤k−1 ai

x
∏

1≤i≤k−1(x+ ai)
−

∏
1≤i≤k ai

x
∏

1≤i≤k(x+ ai)
=

∏
1≤i≤k−1 ai

x
∏

1≤i≤k−1(x+ ai)

(
1− ai

x+ ak

)
=

∏
1≤i≤k−1 ai

x
∏

1≤i≤k−1(x+ ai)
· x

x+ ak

=

∏
1≤i≤k−1 ai∏

1≤i≤k(x+ ai)

as desired.

Now, we may prove Theorem 2.4:

Proof. We will use the setup of Lemma 2.5. Let x = n2 and let ak = −k2. Then, we have

n∑
i=1

∏
1≤j≤i−1 aj∏

1≤j≤i(x+ aj)
=

n∑
i=1

(−1)i−1(i− 1)!2∏
1≤j≤i(n

2 − i2)

=
1

n2
− (−1)n−1(n− 1)!2

n2
∏

1≤i≤n(n
2 − i2)

=
1

n2
− (−1)n−1(n− 1)!2

n2(1)(2) · · · (n− 1)(n+ 1)(n+ 2) · · · (2n− 1)

=
1

n2
− 2(−1)n−1n!

n2(n+ 1)(n+ 2) · · · (2n− 1)(2n)

=
1

n2
− 2(−1)n−1

n2
(
2n
n

) .

Next, we will massage
∑n

i=1
(−1)i−1(i−1)!2∏

1≤j≤i(n
2−i2) into a more useful form. In particular, consider

cn,k =
k!2(n− k)!

2k3(n+ k)!
.
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Then, we have

(−1)kn (cn,k − cn−1,k) =
(−1)kn

2

(
k!2(n− k)!

k3(n+ k)!
− k!2(n− k − 1)!

k3(n+ k − 1)!

)
=

(−1)kn

2
· k!

2(n− k − 1)!

k3(n+ k − 1)!

(
n− k

n+ k
− 1

)
=

(−1)k−1n

2
· k!

2(n− k − 1)!

k3(n+ k − 1)!

(
1− n− k

n+ k

)
=

(−1)k−1n

2
· k!

2(n− k − 1)!

k3(n+ k − 1)!
· 2k

n+ k

= (−1)k−1n · (k − 1)!2

(n− k)(n− k + 1) · · · (n+ k)

=
(−1)k−1(k − 1)!2∏k

i=1 (n
2 − i2)

Now, note that

m∑
n=1

n−1∑
k=1

(−1)k

2

(
k!2(n− k)!

k3(n+ k)!
− k!2(n− k − 1)!

k3(n+ k − 1)!

)
=

m∑
n=1

1

n3
− 2

m∑
n=1

(−1)n−1

n3
(
2n
n

) .

Summing the LHS a different way gives

m∑
n=1

n−1∑
k=1

(−1)k(cn,k − cn−1,k) =

m−1∑
k=1

(−1)k
m∑

n=k+1

(cn,k − cn−1,k)

=

m−1∑
k=1

(−1)k(cm,k − ck,k)

=

m∑
k=1

(−1)k(cm,k − ck,k)

=

m∑
k=1

(−1)kk!2(m− k)!

2k3(m+ k)!
+

m∑
k=1

(−1)k−1k!2

2k3(2k)!
.

Note that

lim
m→∞

m∑
k=1

(−1)kk!2(m− k)!

2k3(m+ k)!
= 0

since the terms are O(m−2) and we are only summing up m of them. Then,

∞∑
n=1

1

n3
− 2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) =
1

2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) .

so
∞∑

n=1

1

n3
=

5

2

∞∑
n=1

(−1)n−1

n3
(
2n
n

)
as desired.

Next, consider the following sequence:

Definition 2.6. Let

tn,k =

n∑
m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) =

n∑
m=1

1

m3
+

k∑
m=1

cn,m.
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As n → ∞, the second term goes to 0 uniformly for all k. Hence, some subsequence of this triangle
could be used as convergents for ζ(3). However, this convergence is not fast enough. Instead, consider the
following sequences.

Definition 2.7. Define the sequence a of rational numbers as follows:

a0 = 0

a1 = 6

an =
(34n3 − 51n2 + 27n− 5)an−1 − (n− 1)3an−2

n3
.

It turns out that

an =

n∑
k=0

tn,k

(
n

k

)2(
n+ k

k

)2

,

though proving this is beyond the scope of this paper.

Definition 2.8. Define the sequence b of rational numbers as follows:

b0 = 1

b1 = 5

bn =
(34n3 − 51n2 + 27n− 5)bn−1 − (n− 1)3bn−2

n3
.

It turns out that

bn =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

,

though proving this is beyond the scope of this paper.

Lemma 2.9. For all n ≥ 0,
2lcm(1, 2, . . . , n)3an ∈ Z.

Proof. Recall that

an =

n∑
k=0

tn,k

(
n

k

)2(
n+ k

k

)2

=

n∑
k=0

n∑
m=1

1

m3

(
n

k

)2(
n+ k

k

)2

+

n∑
k=0

k∑
m=1

cn,m

(
n

k

)2(
n+ k

k

)2

.

The first term on the RHS is clearly in Z
2lcm(1,2,...,n)3 , so it suffices to show that the second term satisfies a

similar property. We have

n∑
k=0

k∑
m=1

cn,m

(
n

k

)2(
n+ k

k

)2

=

n∑
k=0

k∑
m=1

(−1)m−1
(
n
k

)2(n+k
k

)2
2m3

(
n
m

)(
n+m
m

) .

Consider the number of times that a prime p divides each term (denoted by the function νp). We will show
that this value is always nonnegative. First, we will show that

νp

((
n

m

))
≤ νp (lcm(1, 2, . . . , n))− νp(m).

To do this, compare the products
(m)(m+ 1) · · · (n),

and
(1)(2) · · · (m).
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Say that k has the maximum value of vp(k) among all values between m and n. Then, the other values
between m and n have sum of value of vp at most vp (lcm(1, 2, . . . , n)), which means that

vp

(
m

(
n

m

))
≤ vp (lcm(1, 2, . . . , n)) ,

which gives the desired result.
Now, we show that

2lcm(1, 2, . . . , n)
(−1)m−1

(
n+k
k

)
2m3

(
n
m

)(
n+m
m

)
is an integer by counting the factors of p:

vp

(
2lcm(1, 2, . . . , n)

(−1)m−1
(
n+k
k

)
2m3

(
n
m

)(
n+m
m

)) = 3

⌊
log n

log p

⌋
− 3vp(m) + vp

( (
n+k
k

)(
n
m

)(
n+m
m

))

= 3

⌊
log n

log p

⌋
− 3vp(m) + vp

( (
n+k
k−m

)(
n
m

)(
k
m

))

≥ 3

⌊
log n

log p

⌋
− 3vp(m) + vp

(
1(

n
m

)(
k
m

))

≥ 3

⌊
log n

log p

⌋
− 3vp(m)−

⌊
log n

log p

⌋
+ vp(m)−

⌊
log k

log p

⌋
+ vp(m)

=

⌊
log n

log p

⌋
−
⌊
log k

log p

⌋
+

⌊
log n

log p

⌋
− vp(m)

≥ 0.

Lemma 2.10. For all n ≥ 0,
bn ∈ Z.

This follows trivially from the combinatorial sum for bn. Now, we may show the following:

Lemma 2.11. We have
lim
n→∞

an
bn

= ζ(3).

Proof. Note that an

bn
is a weighted average of cn,0, cn,1, . . . , cn,n. Thus, since cn,k converges uniformly in k

to ζ(3) as n → ∞, this weighted average also converges to ζ(3).

We now present the proof of Apery’s theorem!

Proof of Theorem 2.2. We will show that∣∣∣∣ζ(3)− an
bn

∣∣∣∣ = O
((

2lcm(1, 2, . . . , n)3bn
)−α

)
for α > 1, so we will be done by Theorem 2.3.

Let P = 34x3 − 51x2 + 27x− 5, so that

an =
P (n)an−1 − (n− 1)3an−2

n3

and analogously for b. Then,

anbn−1 − an−1bn =

(
P (n)an−1bn−1 − (n− 1)3an−2bn−1

)
−
(
P (n)bn−1an−1 − (n− 1)3bn−2an−1

)
n3

=
(n− 1)3 (an−1bn−2 − bn−1an−2)

n3

=
a1b0 − b1a0

n3

=
6

n3
.
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Now,

ζ(3)− an
bn

=

∞∑
k=n+1

ak
bk

− ak−1

bk−1

=

∞∑
k=n+1

akbk−1 − ak−1bk
bkbk−1

=

∞∑
k=n+1

6

k3bkbk−1

= O(b−2
n ).

Now, we want to show that

O(b−2
n ) = O

((
2lcm(1, 2, . . . , n)3bn

)−α
)
,

for some α > 1. To do this, we will have to understand the asymptotic growth of bn (and show that it grows
faster than our extra multiplier). For large n, the recurrence for bn approaches

bn = 34bn−1 − bn−2.

If we then let the growth rate be exponential, we have

r2 − 34r + 1 = 0,

and the root with maximum magnitude here is 17+ 12
√
2 = (1+

√
2)4. On the other hand, it is well-known

that
lcm(1, 2, . . . , n) = en+o(n)

(in fact, this is equivalent to the prime number theorem!). Thus, it simply remains to check that

log
(
(1 +

√
2)4
)
> 3,

which is indeed true, so we are done.

Apery’s theorem in and of itself does not have deep number-theoretic consequences, but its method of
attack can be useful. In particular, Apery’s theorem can be extended to prove that ζ(2) is irrational, although
no one has succeeded in proving that odd zeta values > 3 are irrational. However, it has been shown that
the sum of the reciprocals of the Fibonacci numbers is irrational using similar methods.
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