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1. Introduction

In this expository paper, I introduce the character sum problem and give the elemen-
tary proof of the Polya-Vinogradov inequality, which gives a non-trivial bound for the sum.
Afterwards, I briefly discuss the reason for which we might be interested in bounding the
character sums.

2. Definitions

Definition 2.1. Let m be a positive integer. A Dirichlet character modulo m is a function
χ : Z→ C satisfying the following properties:

(1) For any integers a and b, we have χ(ab) = χ(a)χ(b).
(2) χ is period with period m, i.e. χ(a+m) = χ(a) for all integers a.
(3) χ(a) = 0 if and only if gcd(a,m) > 1.

Example. The principal character χ modulo m is defined to be

χ(a) =

{
1 gcd(a,m) = 1,

0 otherwise.

Example. Let ζ = eiπ/3 be a primitive 6th root of unity. Then let

χ(a) =



0 a ≡ 0 (mod 7),

1 a ≡ 1 (mod 7),

ζ2 a ≡ 2 (mod 7),

ζ a ≡ 3 (mod 7),

ζ4 a ≡ 4 (mod 7)

ζ5 a ≡ 5 (mod 7),

ζ3 = −1 a ≡ 6 (mod 7).

You can check that χ is indeed a character.
For complex characters, we also have a notion of a conjugate χ where we take the output

of χ to be the complex conjugate of the output of χ for any input.

Definition 2.2. A character χ modulo q is said to be induced by another character χ1

modulo q1 if q1|q, and χ(n) = χ1(n) for gcd(n, q) = 1 and χ(n) = 0 otherwise.
A character χ is primitive if it is not induced by any other character.
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Example. The following χ1 modulo 5 is primitive

χ1(a) =

{
0 a ≡ 0 (mod 5),

1 otherwise.

The following χ modulo 10 is induced by χ1:

χ(a) =

{
0 a ≡ 0 (mod 5) ,or a even,

1 otherwise.

3. Problem Statement and Some Easy Bounds

We wish to study the upper bounds on the maximum sum attainable by summing χ(M)
to χ(N). Formally, for any χ modulo q, we wish to find a function f(q) such that for any
integers M < N , ∣∣∣∣∣

N∑
i=M

χ(i)

∣∣∣∣∣� f(q).

We want to focus our attention to nonprincipal characters, as the sum of principal characters
is unbounded (see above example).

Proposition 3.1. Two easy bounds are∣∣∣∣∣
N∑
i=M

χ(i)

∣∣∣∣∣ ≤ q

and ∣∣∣∣∣
N∑
i=M

χ(i)

∣∣∣∣∣ ≤ φ(q)

where φ denotes the Euler totient function.

Proof. We start by showing that
q−1∑
a=0

χ(a) = 0.

for all nonprincipal χ modulo q.

Since χ is nonprincipal, there is some b with gcd(b, q) = 1 such that χ(b) 6= 1. Suppose
that

∑q−1
a=0 χ(a) = s. Then, multiplying both sides by χ(b), we have

sχ(b) = χ(b)

q−1∑
a=0

χ(a) =

q−1∑
a=0

χ(ab).

As a runs from 0 to q − 1, ab takes on each value modulo m exactly once. That is, multi-
plying the modular residues by b simply permutes the residues into a different order. Thus∑q−1

a=0 χ(ab) is the same sum as
∑q−1

a=0 χ(a), but in a scrambled order. Thus we have sχ(b) = s,
or s = 0.

It’s not very difficult to see that |χ(a)| = 0 or 1 for all non-negative integers a because χ
is multiplicative. Furthermore, as q consecutive terms always cancel out to 0, the sum can
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accumulate to at most q.

There are actually only φ(q) modular residues of q that have nonzero character values
(those that are relatively prime to q). Hence, the sum can be at most φ(q). �

4. The Polya-Vinogradov Inequality

Theorem 4.1. An improvement on the upper bounds is the Polya-Vinogradov inequality
which says that ∣∣∣∣∣

N∑
n=M

χ(n)

∣∣∣∣∣ ≤ 2
√
q log q.

In order to prove this inequality, we will follow Schur’s elementary proof as described by
Davenport in his book [DM13]. We first show the following two lemmas:

Lemma 4.2. Define the Gaussian sum to be

τ(χ) =

q∑
m=1

χ(m)eq(m).

Then,

χ(n) =
1

τ(χ)

q∑
m=1

χ(m)eq(mn)

for primitive χ and any integer n coprime to q.

Here, the function eq(m) = e
2πim
q .

Proof. If gcd(n, q) = 1, then we can use the fact that χ(n) = χ(n−1) and that there exists h
such that m ≡ nh (mod q) to write

χ(n)τ(χ) =

q∑
m=1

χ(m)χ(n)eq(m)

=

q∑
h=1

χ(h)eq(nh).

This gives our desired expression for gcd(n, q) = 1 and τ(χ) 6= 0.
Now, we let gcd(n, q) > 1, so we can put

n

q
=
n1

q1
,

where gcd(n1, q1) = 1 and q1|q and q1 < q. When q1 = 1, n is a multiple of q, so the relation
easily holds.

As χ(n) = 0 when gcd(n, q) > 1, we want to prove that

χ(n)τ(χ) =

q∑
h=1

χ(h)e(n1h/q1) = 0,

where e(n) = e2πin so that e(n) = e(n+ 1) for all real n.
Now we write q = q1q2 and put h = uq1 + v where

0 ≤ u < q2, 1 ≤ v ≤ q1.
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Substituting in the expression for h gives us
q1∑
v=1

q2−1∑
u=0

χ(uq1 + v)e

(
n1u+

n1v

q1

)

=

q1∑
v=1

q2−1∑
u=0

χ(uq1 + v)e

(
n1v

q1

)

=

q1∑
v=1

[
e

(
n1v

q1

) q2−1∑
u=0

χ(uq1 + v)

]
,

so it suffices to show that the inner sum is 0 for all v. We will denote this inner sum as S(v),
as a function of v.

The function S(v) is periodic with period q1 because the effect of replacing v by v + q1
changes the range of u to 1 ≤ u ≤ q2, and the terms for u = q2 and u = 0 are equivalent.
Then, if c is any number satisfying gcd(c, q) = 1 and c ≡ 1 (mod q1), then

χ(c)S(v) =

q2−1∑
u=0

χ(cuq1 + cv) =

q2−1∑
u=0

χ(uq1 + cv) = S(v),

as χ(c) = χ(c−1) = χ(c).
Now, if we can find a c such that χ(c) 6= 1, then we would know that S(v) = 0. To

show that there exists some c with χ(c) 6= 1, we use a characteristic property of primitive
characters, namely that for gcd(n, q) = 1, the function χ(n) is not periodic to any modulus
q1 that is a proper factor of q. This implies that there exists integers c1, c2 such that

gcd(c1, q) = gcd(c2, q) = 1, c1 ≡ c2 (mod q1), χ(c1) 6= χ(c2).

So there exists c ≡ c1c
−1
2 which satisfies our constraints on c and has χ(c) 6= 1. It follows

that S(v) = 0, which completes our proof. �

Lemma 4.3. For a primitive character χ modulo q,

|τ(χ)| = √q.

Proof. We can multiply the equation from Lemma 1.4 and the conjugate of that equation to
get the square of the norm of the left side:

|χ(n)|2|τ(χ)|2 =

q∑
h1=1

q∑
h2=1

χ(h1)χ(h2)eq[n(h1 − h2)].

Now sum for n over a complete set of residues (mod q). The sum of the values of |χ(n)|2
is φ(q) (as each nonzero term is exactly 1), and the sum of the exponentials is 0 unless
h1 ≡ h2. (To see this, consider some fixed h1 and h2 such that h1 6≡ h2. Summing the terms
χ(h1)χ(h2)eq[n(h1−h2)] over the residues (mod q) gives all of the qth roots of unity, which
gives 0 when summed up.) Hence,

φ(q)|τ(χ)|2 = q

q∑
h=1

|χ(h)|2 = qφ(q),

which gives our desired expression. �

The following is the proof of the Polya-Vinogradov inequality.
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Proof. First let χ be primitive with q > 1. From lemma 4.2, we have

χ(n) =
1

τ(χ)

q∑
m=1

χ(m)eq(mn).

We also saw from lemma 4.3 that |τ(χ)| = √q. Substituting this, we get∣∣∣∣∣
N∑

n=M

χ(n)

∣∣∣∣∣ =
1
√
q

∣∣∣∣∣
N∑

n=M

q∑
k=1

χ(k)e(kn/q)

∣∣∣∣∣
=

1
√
q

∣∣∣∣∣
q∑

k=1

χ(k)
N∑

n=M

e(kn/q)

∣∣∣∣∣ .
The inner sum is a geometric series, and using the identity eix − e−ix = 2 sin ix we can

show that the expression is

1
√
q

∣∣∣∣∣
q∑

k=1

χ(k)e

(
(M + 1

2
N + 1

2
)k

q

)
sin πNk/q

sin πk/q

∣∣∣∣∣
≤ 1
√
q

q−1∑
k=1

1

|sin πk/q|
.

This sum appears to be the Riemann sum for 1
sinπx

, and because the function is convex
(the second derivative is positive), we can bound the sum using the integral:

1
√
q

q−1∑
k=1

1

|sinπk/q|
≤ √q

∫ 1−( 1
2q

)

1
2q

1

sin πβ
dβ.

As sin πβ is symmetric about 1
2
, we have

= 2
√
q

∫ 1
2

1
2q

1

sin πβ
.

Using that sinπβ > 2β for 0 < β < 1
2
, we get

< 2
√
q

∫ 1
2

1
2q

1

2β
=
√
q log q.

Hence we have the inequality for primitive χ.

Now, assume that χ is induced by a character χ1 (mod q′) with q = q′r. Then χ(n) =
χ1(n) whenever (n, r) = 1 and 0 otherwise, so∣∣∣∣∣

N∑
n=M

χ(n)

∣∣∣∣∣ =

∣∣∣∣∣∣∣
N∑

n=M
gcd(n,r)=1

χ1(n)

∣∣∣∣∣∣∣ .
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We use the Mobius function µ ∗1 = I to represent the characteristic function of gcd(n, r).
Then, ∣∣∣∣∣∣∣

N∑
n=M

gcd(n,r)=1

χ1(n)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

n=M

∑
d| gcd(n,r)

µ(d)χ1(n)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
d|r

µ(d)
N∑

n=M
d|n

χ1(n)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
d|r

µ(d)

N/d∑
m=M/d

χ1(dm)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
d|r

µ(d)χ1(d)

N/d∑
m=M

χ1(m)

∣∣∣∣∣∣ .
Now using the Polya-Vinogradov inequality to the primitive character χ1, we see that the
sum is

√
q1 log q1

∣∣∣∣∣∣
∑
d|n

µ(d)χ1(d)

∣∣∣∣∣∣ ≤ √q1 log q1d(r),

where d(r) is the number of divisors function (each term in the new sum is at most 1, and
there are d(r) terms). We can use the inequality d(r) ≤ 2

√
r because there are at most√

r divisors up to
√
r, and the total number of divisors is at most twice that. Hence, using√

q =
√
q1
√
r, ∣∣∣∣∣

N∑
n=M

χ(n)

∣∣∣∣∣ ≤ 2
√
q log q.

�

The Polya-Vinogradov Inequality is impressive in that it has optimal bounds of
√
q (plus

some logarithm factors), which has not been broken even with stronger assumptions such as
the Generalized Riemann Hypothesis.

5. Applications of the Bound

An application of the result is on the worst-case bounds of the first quadratic non-residue
for a large prime q. A residue r is a quadratic residue of q if there exists a such that r ≡ a2

(mod q). We can create a Dirichlet character by assigning 0 when gcd(r, q) > 1, 1 when r is
a quadratic residue, −1 when it is a non-quadratic residue.

Because the partial sum of any character is bounded for any prime modulo q, that means
that a non-quadratic residue must occur before that bound is reached. The same applies to
quadratic residues, except that in that case it’s a bit boring because 1 is a quadratic residue.

One of the reasons we care about this result about quadratic residues is that we want
to observe the worst-case short-term behavior of number-theoretic sets. For random sets in
probability, it turns out that short-term behavior can fluctuate greatly even when globally,
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the set has a normal distribution (This is the central limit theorem). This means that we
cannot say anything local from our global statistics. So, instead of looking at purely random
sets, we look at sets with some structure, like quadratic residues with their multiplicative
property. The nonzero values of quadratic residues {−1, 1} are like coin flips, but unlike
completely random sets, we can use their special property to better approximate their short-
term behavior [Tao09].

In fact, using the property, one can ”amplify” the bad behavior in one short intervals
to other short intervals to influence the global behavior. Hence, we can actually obtain a
better bound for the first non-quadratic residue. The Burgess bound does this, and it gives
a bound on the order of q

1
4 plus some logarithm factors. Assuming the Generalized Riemann

Hypothesis gives us a bound on the order of (log q)2 [jon14].
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