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1. Algebra Background

Because of the extensive background required to prove the class number formula,

we will state several theorems without proof or only with a proof outline.

Definition 1.1. An algebraic integer is a complex number that is the root of some

monic polynomial with integer coefficients. We denote the set of algebraic integers

in a field F as OF , where F is an algebraic extension of Q.

Definition 1.2. The discriminant of Q(
√
−d) is

D :=

{
4d if d ≡ 1, 2 (mod 4)

d if d ≡ 3 (mod 4)

Theorem 1.3. OF is a ring.

We will show a special case of the class number formula on the ring of algebraic

integers in Q(
√
−d) with d a positive integer, which we will denote O. We can let d

be square-free since Q(k
√
−d) is the same field as Q(

√
−d) for any integer k. Notice

that when d ≡ 1, 2 (mod 4) then

O = Z[
√
−d] = {a+ b

√
−d : a, b ∈ Z}

and when d ≡ 3 (mod 4),

O = Z
[

1 +
√
−d

2

]
=

{
a+ b

1 +
√
−d

2
: a, b ∈ Z

}
.

Definition 1.4. Let R be a commutative ring. An ideal of R is an additive subgroup

I of R with the property that nm ∈ I whenever n ∈ I and m ∈ R.

Definition 1.5. An ideal is principal and denoted (n) if it is generated by a single

element n of R. A principal ideal is non-zero if it is not (0).

Definition 1.6. An ideal is proper if it is not all of R. A proper ideal is prime if

whenever nm ∈ I for n,m ∈ R, we have that at least one of n,m are in I.

Definition 1.7. For ideals I, J , we write I · J to be the ideal generated by the set

{nm : n ∈ I,m ∈ J}.
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Definition 1.8. For an ideal I of O, we write the norm of I

N(I) := [O : I].

Theorem 1.9. Every nonzero proper ideal in O can be uniquely factored into a

product of nonzero prime ideals in O.

Corollary 1.10. For non-zero ideals I, J , we have that N(I · J) = N(I)N(J).

Proof. As a rough sketch: When I, J are coprime then define the isomorphism from

O/(I · J) → O/I × O/J taking n (mod I · J) to (n (mod I), n (mod J)) for n ∈
O. Thus N is multiplicative. To show it is completely multiplicative, define an

isomorphism from O/p to pj/pj+1 for prime p and arbitrary j. �

Theorem 1.11. Let p be prime in Q(
√
−d).

• If D is a nonzero quadratic residue modulo p, then (p) is the product of two

distinct prime ideals P1, P2 of norm p.

• If p divides D then (p) is P · P for some prime ideal P of norm p.

• If D is a quadratic non-residue modulo p then (p) is a prime ideal of norm

p.

2. Kronecker Symbol

Before we move to the statement and proof of the class number formula, we can

expand on the algebra above to help us connect our final result to analytic number

theory.

Definition 2.1. The Kronecker symbol is a completely multiplicative function such

that for each prime p,

χ(p) :=


0 p | D
1 D is a nonzero quadratic residue modulo p

−1 D is a nonresidue modulo p

.

In fact, χ is a Dirichlet character with conductor D.

Theorem 2.2. For any natural number n, the number of ideals of norm n is equal

to (1 ∗ χ)(n).

Proof. Since χ is completely multiplicative, 1∗χ is multiplicative. By unique factor-

ization of ideals, the number of ideals of norm n (which we will denote I(n)) is also

multiplicative. Then, it remains to show that for prime p and positive integer e,

χ(p) + χ(p)2 + . . .+ χ(p)e = I(pe).

It remains to go case-by-case on whether D = d, 4d and χ(p) = 0, 1,−1, which we

will not do. �
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Definition 2.3.

ζO(s) :=
∑
I

1

N(I)s

Corollary 2.4.

ζO(s) = ζ(s)L(s, χ).

Proof. We know

ζO(s) =
∑
I

1

N(I)s

=
∑
n

(1 ∗ χ)(n)

ns

=
∑
n

1(n)

ns

∑
n

χ(n)

ns

= ζ(s)L(s, χ).

�

3. The Ideal Class Group and Quadratic Forms

The set of ideals of O form a monoid, not a group. However, we can form a group

by defining equivalence classes on them.

Definition 3.1. We say I ∼ J if there exists some n ∈ Q(
√
−d) such that I ·(n) = J .

These equivalence classes of ideals in O form a group, which we call the ideal class

group of O. The class number formula essentially computes the size of this group,

which we denote h(D). Instead of directly computing the number of equivalence

classes of ideals, we will consider equivalence classes on quadratic forms associated

with these ideals.

Definition 3.2. For each ideal I of O, we define the quadratic form QI : I → Z≥0
such that

QI(n) := nn̄/N(I)

where n̄ is the complex conjugate of N . We additionally write QI ∼ QJ whenever

I ∼ J .

Theorem 3.3. Suppose n is a natural number, and Q1, Q2, . . . , Qh(D) are represen-

tatives of the equivalence classes of positive definite quadratic forms of ideals in O.

Then the number of ideals of norm n in O is equal to the number of representations

of n of the form Qi(x, y) where i ∈ {1, 2, . . . , h} and x, y ∈ Z divided by the number

ω of units in Q(
√
−d).
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Proof. Suppose Qi(x, y) = n with i, x, y all chosen as in the theorem. Then Qi is

isomorphic to QJ for some ideal J , and so n = QJ(m) for some m ∈ J , imply-

ing N(m) = nN(J). Ideals are uniquely factorable and norms are multiplicative,

so (m) = I · J for some ideal I of norm n. We will show that this defines an

almost-bijection from the representations of n as Qi(x, y) to the ideals of norm n.

In particular, if we change i then we change our ideal J , and if we change x or y,

then we change our element m to some m′. We have (m) = (m′) precisely when m

and m′ differ by a unit, so this is an injection if we form equivalence classes on the

domain based on whether m and m′ differ by a unit. If I is an ideal of norm n, then

Lagrange’s theorem tells us that N(I) ∈ I, and thus QI(n) = n. Taking the i that

QI is represented by in its equivalence class, we have that this is a surjection. �

Corollary 3.4. The number of ideals I in O with N(I) ≤ x is

2πh(D)

ω
√
|D|

x+OD(
√
x).

Proof. By Theorem 3.1 we know the number of ideals with norm less than or equal

to x is

1 +
1

ω

h(D)∑
i=1

∑
Qi(a,b)≤x

1.

The inner sum is the number of lattice points in the ellipse {(a, b) ∈ Z2 : Qi(a, b) ≤
x}, which (as we will not prove, since it is slightly outside our scope) has area 2πx√

|D|
.

The number of lattice points differs from the area by OD(
√
x). �

Theorem 3.5 (Dirichlet’s Class Number Formula). As s approaches 1,

(s− 1)ζO(s) =
2πh(D)

ω
√
|D|

+OD(1).

Proof. This comes from Corollary 3.4, but the rest is mostly beyond our scope and

requires complex analysis. We will outline the proof instead. Suppose

an := (1 ∗ χ)(n)− 2πh(D)

ω
√
|D|

.

Then we get that the partial sums of an is

Ax =
∑
n≤x

(1 ∗ χ)(n)− 2πh(D)

ω
√
|D|

x,

which as we showed in Corollary 3.4 is bounded by a constant multiple of
√
x.

To prove our theorem, we show that the Dirichlet series of the an’s is equal to

ζO(s)− 2πh(D)

ω
√
|D|
ζ(s) and is analytic at s = 1. �
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Corollary 3.6.

h(D) =
ω
√
|D|

2π
L(1, χ)

Proof. This follows using Corollary 2.4. �


