SMALL GAPS BETWEEN PRIMES

SARAH FUJIMORI

1. INTRODUCTION

A major question of analytic number thoery is whether there exist infinitely many pairs
of primes with a bounded difference. The twin prime conjecture is still an open problem:

Conjecture 1.1. (Twin Prime Conjecture) There exist infinitely many pairs of primes (p, q)
such that p — q = 2.

In recent years, there has been significant progress towards solving this problem. In this
paper, we state the Bombieri-Vinogradov Theorem and use it to prove a theorem of Goldston,
Pintz, and Yildirim from 2005. We also introduce the Elliott-Halberstam conjecture and how
proving it helps reduce the proven bound for gaps between primes and describe the recent
work of Terence Tao, Maynard, and others.

2. THE BOMBIERI-VINOGRADOV THEOREM

The Bombieri-Vinogradov theorem can help us prove Goldston, Pintz, and Yildirim’s
result. We state it below:

Theorem 2.1. (Bombieri-Vinogradov) Let A be a fized, positive real number. For all x > 2
and Q satisfying Q € [\/z(logx)™4,\/z]. Additionally, let

Y(riga)= Y An)
Then we have

max Imax
y<z 1< a<q
q<Q ged(a,q)=1

ga) — 2| = og z)°\x
by q,0) M\ 0(Q(log 2)'/7)

3. THE WORK OF GOLDSTON, PINTZ, AND YILDIRIM

Theorem 3.1. (Goldston-Pintz-Yildirim) Let f(p) be the smallest prime greater than p.

Then
lim inf —f(p) —Pp
p—oo  logp
Proof. Let H, N, and R be real numbers satisfying H = O(log N) and H < N, logN =
O(log R), and log R < log N. Let k and [ be arbitrary positive integers.
Define H as a tuple {hq, ho,---hi} C [1, H| N Z, and for some prime p, define Q(p) =
{a : 3h € H,a = —h (mod p)}. More generally, for some squarefree integer d, define

=0
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Q(d) = {a : ¥p|d,a € Q(p)}. Let H be a tuple such that [Q(p)| < p for all primes p, and
enumerate its elements as hy, ho, - - - hy.
Let H =6, and let H = {3,5}. Then, 2(2) = {1} and 2(3) = {0, 1}, so (6) = {1}.

Define two functions Ap and Ag as

0 d<R
() = {(5) p(@) (o §)" d > R

Agr(n;H,a) = Z/\Rda

d|P(n;H)
1 R\*
= Z 1(d) (logg)
d|P(n;H)
d<R

where P(n;H) =
Let a=3, R=09,

AR(n;H,a):$ Z) 1(d) (log ) ZN (log )3

(n+h;). Let H =06, and let # = {3,5} as in the previous example.

IT:
n=4. Then, P(n,H) = (4+3)(4 +5) = 63.

[| 1l
MR

" d|P(niH 04
d<R d<9
1 9 1.7
= (1) log 9 + u(3)log 3 + 1u(7) log = + 1u(9) log(1)) = = (log )

The motivation for these choices of functions comes from the following identity:

Proposition 3.2. Suppose m is a positive integer, and n has more than m distinct prime

factors. Then, we have
Z wu(d <log ) =0
dln

Proof. We prove this by strong induction on m. We first prove a slightly different identity,
that

Zu (logd)™

dn
For our base case, we have m = 1, so the sum is }_, s(d)(d). Recall that this is —A
where A is the von Mangoldt function, so since n has more than 1 factors, the sum is 0 and

the identity holds.
Next, assume that our claim holds for all £ satisfying 1 < k < m. We show that

Zu ) (log d)™ ' =0,

where n has more than m + 1 prime factors. Factor out a prime from n, so that n = p*b for
positive integers a and b. We separate the sum based on ged(d, p):

> _u(d) (logd)™™ = 3 p(d)(logd)™ ™+ > p(d) (logd)™

dn din dn
ged(d,p)=1 ged(d,p)>1
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= uld) (logd)™™ + > p(pd) (log pd)™ "
dlb dlpa—1b

In the sum on the right, if d is a multiple of p, then we have p(d) = 0, so we only sum
over d|b:

= uld) (log )™ + > p(pd) (log pd)™ !
d)b d)b

Since ged(d, p) = 1 now in the sum on the right, we can factor p(pd) into p(p)u(d):

= u(d) (logd)™™ =" p(d) (log d — log p)™*"
djb djb

= Z 1(d) ((logd)™™ — (logd — logp)m+1)
djb
We expand out the sum using the Binomial Theorem:

= _uld) ( logd)™™ = > (m :r 1) (logd)™ " (= 10gp)i>

d)b i=0

= n(d) <— > (m + 1) (logd)™ ™" (~ logw‘)

djb i=1
Shifting the indices of the second sum down by 1,

- m + 1 m—i i
= p(d) (—Z ( . > (logd)™ ™" (—logp) “)
, 1+ 1
dlb =0
Switching the sums yields
m+1 z+1
:_Z(@+1> —logp) %b:u (logd)™

Since b has more than m factors and the m—i ranges from 0 to m, the sum 3, pu(d) (log d)™ ™
is always 0 by the induction hypothesis. Thus, the general identity holds.
We now prove our original claim; that

Zu <10g ) =0

dln
. By the Binomial Theorem,

> p(d) (10g ) => p(d)

( )logn (—logd)™™
din din k=0

Switching the order of the sums,

Ms

m

=3 ()o@ togay

k=0 d|n
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We proved that >, u(d)(—logd)® for any integer a, so the sum is 0, as desired. O

If for all ¢+ with 1 < i < k, n + h; is prime, then P(n;?H) has exactly k& prime factors, so
AR detects this property, but with the sum truncated at R.
We aim to approximate the sum

> (MMM k+1))%.

N<n<2N

Proposition 3.3.

3" (MM k+1)?=NT +0 (Zm ||)\de+[)>

N<n<2N d<R

where

’Q ICH’I dl;dZ))l
T . .
E lem(dy, dy) Ar(di; k4 DAr(do; k + 1)

Proof. By the definition of Ag, we have

Yool D Qwldk+D)

N<n<2N \d|P(n;H)

> Anldik + DAg(daik+1)
N<n<2N di|P(n;H)
d2|P(nyH)

Suppose dy|P(n;H). Then, for every prime p dividing dy, P(n; H) = (n+hy)(n+hsg) - - - (n+
hi) = 0 (mod p), so there exists i satisfying n = —h; (mod p). Thus, since n € Q(p) for
every prime p|d;, we conclude that dy|P(n;H) is equivalent to n € Q(d;), and similarly for
d2:

> Ar(disk+DAp(doik+1) > 1

d1,d2<R N<n<2N
nEQ(dl),Q(dz)

Since n € Q(dy),Q2(d2) <= n € Q(lem(dy, ds)), we have
Y= Ml o) ac)

N<n<2N lem(dy, )
neQ(lem(dy,dz2)

Recall that we set

|Q2(lem(dy, dg))]
T= § : :
lem(dy. dy) Ar(dys k + D) Ar(dos K +1)

Then, we have

S (Ar(msHk+ 1)) :NT+O< 3 ]Q(dl)HQ(dz)!(AR(dl;k+l))\R(d2;k+l))>

N<n<2N d1,d2<R
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2
= NT+0 <Z|Q \|Ade+l)>

d<R
as desired. 0

Evaluating T uses complex analysis, so we will skip it; the result is the following:

Lemma 3.4.

G(H 21 _ .
> (Ap(msH, k+1)° = (k—i<——2l)) ( z )N(log R)* ' 4+ O (N(log N)"**~!(loglog N)°)
N<n<2N
where i
Q 1\
GH) = ] (1—M) (1——) ,
p prime p p
and c 1s a constant.
Next, we analyze the behavior of another function. Let
logn n prime
w(n) = .
0 otherwise

Note that »_ ., @(n) = 0(x).
We look at the expression

> @(n+h)(Ap(n;H, k+ 1))

N<n<2N

where h is an integer satisfying h < H. We claim the following:
Lemma 3.5.

> @+ h)(Ar(n;H, k+1)* = NT'+ O (L)

A
N<n<2N (lOg N) 8

where

)\R(dl' k+ l))\R(dz k+ l)
=) ’ ’ > 6((b+ hlem(dy, dy)))
di,d2<R ¢(lem(dy, ds)) beQ(lem(d ,dz))

with §((a,b)) =0 if a = b and 1 otherwise.
Proof. If R < N, then by the definition of w(n + h), the sum is equal to

> @+ h)(Ar(n; H\{B}, k+1))°

Let 9(y;a,q) =Y. y<n<zy w(n). An equivalent form of the Bombieri-Vinogradov The-

n=a (mod q)
orem says that for fixed A > 0, there exists C' > 0 such that when @ <

(log w)

max Imax
y<z 1<a<g-1
q<Q ged(a,g)=1
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6
Thus, we assume that R < —X2_ for some constant C.

) (log N)
Again, we expand the square:

Y @) Ar(nH E+D)? = > @wnth) Y Ap(diH k+1D)Ag(dy; H k+1)

N<n<2N N<n<2N di|P(nyH)
da|P(n;H)
> Ar(diH b+ DAp(do H b +1) Y @(n+h)
d1| P(n;H) N<n<2N
da|P(n;H)

> Ar(di M k+DAR(des Ho k+1) > 8((b+h, lem(dy, d)))I(N; bt-h, lem(dy, d))

d1|P(n;H) beQ(lem(ds ,d2))
da|P(n;H)

for some constant

Let L = Ag(dy; H, k + 1) Ar(d2; H, k + 1), and assume that R < o

N)C
C'. Because of the Bombieri-Vinogradov Theorem, we split the sum up based on the value
of |Q(lcm(d1, dg))|

= > L > 5((b+ h,lem(dy, d)))I(N; b+ h,lem(dy, dy))
d1|P(nyH) beQ(lem(dy,d2))
2IPMH) 0em(d,do)|<(log N) 2
+ > L > 5((b + h,lem(dy, d2)))O(N; b+ h,lem(dy, ds))
di|P(nyH) beQ(lem(dy,d2))
da2|P(nyH)

|Q(lem(dy,d2)|>(log N) 2
As in the statement of our lemma, set

L
leZ gb(lcm(dl, dQ))
d2|P(n; H)

Let m,(n) = > g, d*. We can approximate the second sum as

oy Gl

_o (L)
(log N)3

We apply the Bombieri-Vinogradov Theorem to the first part of the sum, since we have a
bound on the number of terms, so we can approximate the first sum as N7T’, with a smaller
error. Combining these two approximations gives the desired result,

N
wn+h)(Ag(n;H, k+1D))*=NT"+0 | ———
N<n2<2N e 1 = ' ((logN)3>

Again, evaluating 7" uses complex analysis, so we skip it and state the result:
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Lemma 3.6. Assuming that R < Mg N I© for a sufficiently large C' > 0 depending on k and
L,
Z w(n+h) (Ag(n; H, k+ 1))

N<n<2N
_ ((gff}])l,}) (QII)N(log R*2 4+ 0O ( (log N)**+2=1(log log N)C) heH
(,H;l 31)! (PN (log R)¥+2+1 4 O (N (log N)¥+2(loglog N)°)  h € H

(Note that these are very similar; the expression for the second case is the expression for the
first case with k shifted down 1 and l shifted up by 1.)

We now use these lemmas for the main proof. Consider the expression

Z Z (Z (n+h)— log3N> (Ar(n; M, k+1))?

HC[1,H] N<n<2N \h<H
[H|=k

If this expression is positive, then one of the terms must be greater than 0, there exists
some n satisfying N < n < 2N such that ), ., w(n+h)—log3N > 0. Recall that H < N.
If only one of n+h for 1 < h < H is prime, then the sum is log(n+ hy) for some hy between 1
and H, and we have log(n+h;)—log(3N) <log(2N+H)—log(3N) < log(3N)—log(3N) = 0.
Thus, there must exist two values of h such that n 4+ h is prime; we can confirm that two
primes is enough because the sum will be at least log(n + 1)? > log(N + 1)? > log 3N.

We conclude that since there is a interval of length H in (N,2N + H], we have

min 1—pr < H
N<pr<2N+H Pre1 = Pr

By Lemma 3.4, we have

>y (Z (n+h)— log3N) (Ar(n;H, k+1))*

HC[1,H] N<n<2N \h<H
[H|=k

= > > (Z n+h)>(AR(n%k+l Y > log3N(Ag(n; M, k+1))*

HC[1,H] N<n<2N \h<H HC[1,H] N<n<2N
[H|=Fk M=k

= > > (Z n+h)>(AR(n;H,k+l))2

HC[1,H] N<n<2N \h<H
[H|=Fk
1 21 k+21 k+20—1 c
—log 3N Z (m(l>N(10gR) + O (N(log N) (loglog N)°)
HC[1,H]
|H|=Fk

= > > D wn+h)+ > @wn+h) | (Ap(nH, k+1))

HC[1,H] N<n<2N | h<H h<H
|H|=k heH heH
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1 21
—log 3N <—| ( )N(log R)*2 4 O (N(log N)¥™~(log log N)C)) > G(H)
(k+20)!'\ T
|H|=k
For the sum ) Sycp,m G(H), we state a theorem of Gallagher:
[H|=k
Theorem 3.7.
>, G
HC[1,H]
|H|=k
as H — oo

We omit the proof, as it is beyond the scope of this paper.
Using Gallagher’s theorem, the expression above is equal to

= > > D mn+h)+ > @wn+h) | (Ap(nH, k+1))

HC[1,H] N<n<2N | h<H h<H
|H|=k heH heH

1 2
—H"log Nm ( z ) N(log R)**? + o (N H*(log N)*+2+1)

Using Lemma 3.6, we can simplify the first sum:

Z Z Z{f 2{lh} ( l ) N(log R)***" + O (N (log N)**~!(log log N)°)

|’H| k: hE’H
+ E g 20+ 1) N(log R)**~' + O (N(log N)***(loglog N)°)
k? + 2l —|— DI\ 1+1
HC[1,H] i
|H|=k heH

1 2
—H*log N ————— ( l) N(log R)"*' + o (NH"(log N)*2+1)

(k+ 20\ I
_ <;|<2l) 1ogR’f+2l> DAY
(k+20)1\ 1 HC[1,H] h<H
|H|=k heH
1 21+ 1) k
+ ! - N(lo +21— 1) G
(i) veert ) 5 5 aom)
|7.¢| k he’H

1 21
—H"log Nm ( l ) N(log R)" + o (NH"(log N)*2+1)

where we include the error bounds on the sums in the last error bound.
Using Gallagher’s theorem, the first sum is just the sum over all tuples of length £ + 1, so
this is equal to

1 21 1 2(0+1) ~
_ N(1 Rk+2lHk+l N(1 Rk+2l 1Hk
(k+2l)!(l> (log ) Thrar i\ g )Nl R)
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1 21
—H" log Nm ( ; )N(log R)*** 4+ o (NH*(log N)**211)

Factoring out @ (*) NH"(log R)**? yields

1 21 k k+21 2k(2+ 1)
= () vtos e (14 e e

where the ¢ comes from the error term and is greater than 0.

1
Recall that R < (lolgv—;‘r,w for a constant C'; then, taking the logarithm of both sides yields

log R < ilogN —log(C'log N) < }llog N. Thus, since the part of the expression that we
factored out is positive, for the expression to be positive we must have

2k(20 + 1)
k+2l+1)(l+1)) '

Recall that k and [ are arbitrary, so if we set | = |Vk], then we have 1051\/ > 0. We

conclude that the original expression is positive, and so taking the limit as N — oo of
: Pr4+1—Pr H :
MINN<p, <ON+H oy~ = Tog & S1VES

(log R) — log N + (log N)>

H > (logN) (1+5— 1

liminf 22— Pn g
n—00 logn

as desired.

4. THE ELLIOTT-HALBERSTAM CONJECTURE

Let 7(x) denote the number of primes less than or equal to =, and let 7(z; ¢, a) denote the
number of primes p such that p < z and p = a (mod ¢q). We know that for a, b satisfying

ged(a,n) =1 and ged(b,n) = 1, we have lim,_, o ’;fgg?jfb)

= 1, which implies that

1@
m(ig,a) ?(q)

The Elliott-Halberstam conjecture is a generalization of the Bombieri-Vinogradov Theo-
rem; it is as follows:

Conjecture 4.1. (Elliott-Halberstam) Define an error function for the Dirichlet approzi-
mation of w(x;q,a): let

()

m(r;q,a) — ——

o(q)

Then for every 8 < 1 and A > 0, there exists a constant ¢ such that for all x > 2,
> Elwq) < 1 “
e (log z)

(Note that the conjecture fails when 6 = 1.

E(qg:7) =
(o) = Jmax

If we assume the Elliott-Halberstam conjecture on primes in arithmetic progression, then
Terence Tao, James Maynard, and others proved that we have
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Theorem 4.2.

liminf f(p) —p <6

p—0o0

Without assuming the Elliott-Halberstam conjecture, the current best bound is also due
to Terence Tao, James Maynard, and others:

Theorem 4.3.

liminf f(p) —p < 246

p—o0

We omit these proofs, since they are beyond the scope of this paper.

[Gal76]
[GGPY09)]
[GMPYO06]
[GPY09]

[TM14a]
[TM14b]
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