CHEBYSHEV'S BIAS

ROULI FREEMAN

Notice: This paper is refrenced from the "Chebyshev's Bias" paper by Rubinstien and company. [1] It has been shown that

$$\pi(x,q,a) \sim \frac{\pi(x)}{\phi(q)}$$

Where $\phi(q)$ is the euler totent function, the number of relatively prime to q numbers $\leq q$. $\pi(x, q, a)$ is the number of primes $\leq x$ that are equal to $a \mod q$ and $\pi(x)$ is the number of primes $\leq x$, which is equal to $\pi(x, 1, 1)$.¹

The phenomenon called "Chebyshev's Bias" is that for small primes, there are some cases in which $x \mod n$ has more numbers than $y \mod n$. In fact, for most small numbers, $\pi(x, 4, 3) > \pi(x, 4, 1)$. The majority of this paper will be talking about similar phenomenons.

Definition: The logarithmatic density is defined as

$$\delta(A) = \lim_{x \to \infty} \frac{1}{\log x} \int_{t \in P \cap [2,x]} \frac{1}{t}$$

for A a set. Higher numbers in the set contribute less, and $\delta(A) + \delta(B) + \delta(C) + \ldots = 1$ if A, B, C, \ldots are disjoint, and $A \cup B \cup C \cup \ldots = [2, \infty]$

In fact, there is a upper logarithmatic density and a lower logarithmatic density, which when equal to each other, converge to $\delta(A)$.

Definition:

$$P_{q;a,b,c,d,e..}$$

is the set of all real numbers $x \ge 2$ such that

$$\pi(x, q, a) > \pi(x, q, b) > \pi(x, q, c) > \pi(x, q, d) > \pi(x, q, e) > \dots$$

In some cases, the logarithmatic densities are extremely high or low, showing a large bias.

In the case of $P_{3;2,1}$, $\delta(P_{3;2,1}) = 0.9990...$, showing that there are much more numbers in this set than in the other set, $(P_{3;1,2})$. In fact, the first number of $P_{3;1;2}$ is 608981813029. Similarly for $P_{4;1,3}$, the first number in it is 26861.

Definition:

$$E_{q;a,b,c,d,e,...}(x) = \frac{\log x}{\sqrt{x}} \times (\phi(q)\pi(x,q,a) - \pi(x), \phi(q)\pi(x,q,b) - \pi(x), \ldots)$$

$$\pi(x) \sim Li(x) \sim \frac{x}{\log x}$$

¹The prime number theorem states that

ROULI FREEMAN

which returns a vector.

Definition:

 $\mu_{q;a,b,c,d,e,\ldots}$

is the limiting distribution of

 $E_{q;a,b,c,d,e,},$

which exists.

Then $\delta(P_{q;a,b,c,d,e,...}) = \mu_{q;a_1,a_2,...,a_r}(\{x \in \mathbb{R}^r | x_1 > x_2 > x_3 > x_4 > ... > x_r\})$ if $\mu_{a,b,c,d,e,...}$ is absolutely continous.

Note: Assuming the Generalized Riemann Hypothesis² and the Grand Simplicity Hypothesis³, then we have the following equation for the Fourier transform of $\mu_{q;a,b,c,d,e,...}$:

$$\hat{\mu}_{q;a_1,a_2,\dots,a_r}(\xi_1,\xi_2,\dots,\xi_r) = exp\left(i\sum_{j=1}^r c(q,a_j)\xi_j\right)$$
$$\times \sum_{\chi \neq \chi_0,\chi \mod q} \sum_{\gamma_\chi > 0} J_0\left(\frac{2\left|\sum_{j=1}^r \chi(a_j)\xi_j\right|}{\sqrt{\frac{1}{4} + \gamma_\chi^2}}\right)$$

where χ_0 is the principal character, with c being

$$c(q,a) = -1 + \sum_{b^2 \equiv a(q), 0 \le b \le q-1} 1,$$

with J_0 being the Bessel function. ⁴

Definition:

$$(q; a, b, c, d, e, \ldots)$$

is unbiased if and only if $\mu_{q;a,b,c,d,e,...}$ is same for all permutations of a, b, c, d, e, ...In this case,

$$\mu_{q;a_1,a_2,a_3,a_4,a_5,\ldots,a_r} = r!^{-1}$$

Definition:

$$c(q, a) = -1 + \sum_{b^2 = aq, 0 \le b < q} 1$$

²If s is not a negative real number, than for all χ a Dirichlet character, if $L(\chi, s) = 0$, $\mathbb{R}(s) = \frac{1}{2}$. ³The set of $\gamma \geq 0$ such that $L(\chi, \frac{1}{2} + i\gamma)$, for all χ a Dirichlet character, is linearly independent over \mathbb{Q} .

 $J_0 = \sum_{m=0}^{\infty} \frac{(-1)^m (\frac{1}{2}z)^{2m}}{m!^2}$

Theorem: Assuming the Generalized Riemann Hypothesis ⁵ and the Grand Simplicity Hypothesis ⁶, $(q; a_1, a_2, a_3, a_4, a_5, ..., r)$ is unbiased if and only if either r = 2, and $c(q, a_1) = c(q, a_2)$ or r = 3, and

$$\exists p \neq 1 : (p^3 \equiv 1 \land a_2 \equiv a + 1p \land a_3 \equiv a_1 p^2) \mod q$$

Definition:

$$P_{q;N,R} = \{x \ge 2 : \pi_N(x,q) > \pi_R(x,q)\},\$$

$$P_{q;R,N} = \{x \ge 2 : \pi_R(x,q) > \pi_N(x,q)\},\$$

where

$$\pi_R(x,q) = \sum_{a \le x p} \sum_{\substack{\text{prime}, a^2 = q \mod p}} 1,$$

$$\pi_N(x,q) = \sum_{a \le x p} \sum_{\substack{\text{prime}, \sim a^2 = q \mod p}} 1,$$

Definition:

$$P_1 = \{ x \ge 2 : \pi(x) > Li(x) \},\$$

where Li(x) is the logarithmatic integral.⁷

It has been proven that P_1 does extend to infinity, but contary to $P_{4;1,3}$ and $P_{3;1,2}$, no numbers are known of this series.

$$\delta(P_1) = 0.0000026$$

This is extremely low, showing that even though a member of this series may exist, the chance of a random number being in P_1 is small.

Definition:

$$E_{q;N,R}(x) = (\pi_N(x,q) - \pi_R(x,q)) \frac{\log x}{\sqrt{x}}$$

Definition:

 $\mu_{q;N,R}$

is equal to the limiting distribution of $E_{q;N,R}$.

Definition:

$$E_1(x) = (\pi(x) - Li(x))\frac{\log x}{\sqrt{x}}$$

Definition:

⁵If s is not a negative real number, than for all χ a Dirichlet character, if $L(\chi, s) = 0$, $\mathbb{R}(s) = \frac{1}{2}$. ⁶The set of $\gamma \geq 0$ such that $L(\chi, \frac{1}{2} + i\gamma)$, for all χ a Dirichlet character, is linearly independent over \mathbb{Q} .

 $Li(x) = \int_{2}^{x} \frac{dt}{\log t}$

is equal to the limiting distribution of E_1 .

We may numerically compute $\delta(P_{q;N,R})$ as:

$$\frac{1}{2\pi} \sum_{-C \le n\varepsilon \le C} \varepsilon \frac{\sin n\varepsilon}{n\varepsilon} (1 + b_1(n\varepsilon)^2) \times \sum_{0 < \gamma \le M} J_0\left(\frac{2n\varepsilon}{\sqrt{\frac{1}{4} + \gamma^2}}\right) + \frac{1}{2} + e$$

where e is the error,

$$b_1 = -T_1(0) + \sum_{0 < \gamma \le M} \frac{1}{\frac{1}{4} + \gamma^2}$$

where e stands for error, C, M stand for cutoffs to approximate the actual value, set to be 25 and 9999,

$$T_1(X) = \sum_{\gamma > X} \frac{1}{\frac{1}{4} + \gamma^2}$$

and J_0 is the Bessel function. ⁸

This is found by taking a Fourier transform of the density of $\mu_{q;N,R}^{9}$, and then taking the integral. This is then transformed into a sum, and as the integral is an improper integral, some values are cut-off, to make it computable to get a close enough answer.

The value $\delta(P_1^{\text{comp}})$ can also be computed by this equation:

$$\frac{1}{2\pi} \sum_{-C \le n\varepsilon \le C} \varepsilon \frac{\sin n\varepsilon}{n\varepsilon} (1 + b_1(n\varepsilon)^2 + b_2(n\varepsilon)^4) \times \sum_{0 < \gamma \le M} J_0\left(\frac{2n\varepsilon}{\sqrt{\frac{1}{4} + \gamma^2}}\right) + \frac{1}{2} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}}$$

Where C is 5, M is 88190, and

$$b_2 = -\frac{1}{16} \left(2a_1 - \gamma^2 + \frac{1}{8}\pi^2 - 1 \right)$$

where

$$a_1 = \lim_{N \to \infty} \frac{1}{2} \log^2(N+1) - \sum_{m=1}^N \frac{\log(m+1)}{m+1}$$

The paper uses a similar enough method to the way to solve for $\delta(P_{q;N,R})$

References

[1] Michael Rubinstein and Peter Sarnak. "Chebyshev's bias". In: *Experiment. Math.* 3.3 (1994), pp. 173–197. URL: https://projecteuclid.org:443/euclid.em/1048515870.

8

$$J_0 = \sum_{m=0}^{\infty} \frac{(-1)^m (\frac{1}{2}z)^{2m}}{m!^2}$$

⁹In the paper, it says that it is $\mu_{q;R,N}$, and then says that $f_{q;N,R}(t)$ is the density function of $\mu_{q;R,N}$, which does not make logical sense.