ERDŐS-KAC THEOREM

JOSH ZEITLIN

1. Abstract

In this paper, we will discuss the distribution of the number of prime factors a given integer has. We will discuss some initial work done by Hardy and Ramanujan which culminated in the Hardy Ramanujan Theorem. Finally, we'll discuss the Erdős-Kac theorem, which is also described as the fundamental theorem of probabilistic number theory. The Erdős-Kac theorem describes the distribution for the number of prime factors of the integers n up to x where $\omega(n)$ is the number of prime factors as the probability distribution of $\frac{\omega(n)-\log \log(n)}{\sqrt{\log \log(n)}}$

converges to the normal distribution. It extends with work of Hardy and Ramanujan in the Hardy-Ramanujan theorem which says the normal order of $\omega(n)$ is $\log \log(n)$.

2. Important Definitions

Definition 2.1. $\omega(n)$

The function $\omega(n)$ yields the number of prime factors dividing n, more formally:

$$\omega(n) = \# \{ p_i \mid n \text{ s.t. } p_i \neq p_j \forall i, j \}$$

Definition 2.2. The Error Function (erf(x))

The error function yields the error encountered in integrating the normal distribution, explicitly written as,

$$\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{\frac{-t^2}{2}} \mathrm{d}t$$

Definition 2.3. Big O notation

f(x) = O(g(x)) means that f and g have the same asymptotic behavior as $x \to \infty$.

In more formal terms f(x) = O(g(x)) means that $\forall c \ge 0 \ \exists k$ such that $|f(x)| \le c \cdot g(x) \ \forall x \ge k$

Definition 2.4. Little *o* notation

The *o* notation is a stronger version of the *O* notation in the sense that f(x) = o(g(x)) means $\lim_{n\to\infty} \frac{f(x)}{g(x)} = 0.$

Definition 2.5. Normal Order

A function f(x) has the normal order g(x) if $f(x) \approx g(x)$ for almost all values of x. More formally:

$$(1 - \epsilon)g(x) \le f(x) \le (1 + \epsilon)g(x) \ \forall \epsilon > 0$$

Definition 2.6. Gaussian (Normal) Distribution

We defined the error function for this earlier to be our $\operatorname{erf}(x)$. However, the Gaussian distribution is defined here:

$$\Phi(x,y) = \frac{1}{\sqrt{2\pi}} \int_x^y e^{\frac{-t^2}{2}}$$

Date: May 2019.

JOSH ZEITLIN

3. The Hardy-Ramanujan Theorem

Theorem 3.1. The Hardy-Ramanujan Theorem

The Hardy-Ramanujan Theorem says that if you define a function $f(n) = o(n^k)$, then

$$|\omega(n) - \log(\log(n))| < f(n)\sqrt{\log(\log(n))}$$

In simpler terms, this theorem essentially states that the normal order of the number of distinct prime factors of a number is approximately $\log(\log(n))$. We can thus write this theorem more compactly as

$$|\omega(n) - \log(\log(n))| < \log(\log(n))^{\frac{1}{2}+\epsilon}$$
 for almost all $n \in \mathbb{Z}$.

The almost always essentially means let $\rho(x)$ be the number of positive integers $n \leq x$ for which the inequality fails, then $\frac{\rho(x)}{x} \to 0$ as $x \to \infty$, so for larger and larger numbers, the ratio of failed integers up to x compared to total integers approaches zero.

Now, let's go into the history of this development. Hardy and Ramanujan proved this together in 1917; however, 17 years later this was actually proved in 1934 by Paul Turán using the Turán sieve, a much more innovative proof technique.

The Turán sieve is a technique used to estimate the size of sifted sets of positive integers which satisfy certain conditions expressed by congruences. This sieve gives the upper bound of the size of a sifted set and it is derived from an elementary form of inclusion/exclusion principle. Now, before we state the Turán sieve we will use a couple of definitions used in the proof, which should hopefully make the Sieve seem less daunting and abstract.

Definition 3.2. Pre-proof Definitions

(1) Let \mathcal{S} be a finite set and \mathcal{I} be an index set. Then, $\forall i \in \mathcal{I}$, let $\Omega(i)$ denote some arbitrary conditions to be satisfied, then, we define

$$\mathcal{S}_i = \{s \in \mathcal{S} \text{ s.t. } s \text{ satisfies } \Omega(i)\}$$

(2) Using the same $\Omega(i)$ and as in the last definition, $\forall s \in \mathcal{S}$, we'll define

 $\pi_s(\mathcal{I}) = \#\{i \in \mathcal{I} \text{ s.t. } s \text{ satisfies } \Omega(i)\}$

(3) Now, let's define two constants, δ_i and ρ_i such that δ_i is significantly larger than ρ_i we get that

$$\frac{|\mathcal{S}_i|}{|\mathcal{S}|} = \delta_i + \rho_i$$

Think of these as a quotient and remainder.

(4) If we choose some $i, j \in \mathcal{I}$ s.t. $i \neq j$, then

$$\frac{|\mathcal{S}_i \cup \mathcal{S}_j|}{|\mathcal{S}|} = \delta_i \delta_j + \rho_i \rho_j,$$

where $\delta_i \delta_j$ is significantly larger than $\rho_i \rho_j$. Again, δ_i is an approximation whereas ρ_i is a remainder/error term.

Now, we write out the Turán Sieve.

Theorem 3.3. The Turán Sieve Let $\nu = \sum_{i \in \mathcal{I}} \delta_i$. Then,

$$\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} (\pi_s(\mathcal{I}) - \nu^2) = \sum_{i \in \mathcal{I}} \delta_i (1 - \delta_i) + \sum_{i,j \in \mathcal{I}} r_{i,j} - 2\nu \sum_{i \in \mathcal{I}} r_i$$

Before the proof a corollary:

Corollary 3.4.

$$\#\{s \in \mathcal{S} : \pi_s(\mathcal{I}) = 0\} \le \frac{|\mathcal{S}|}{\nu} + \frac{|\mathcal{S}|}{\nu^2} \sum_{i,j \in \mathcal{I}} |\rho_{i,j}| + 2|\mathcal{S}| \sum_{i \in \mathcal{I}} |\rho_i|$$

Proof. Proof of the Turán Sieve

$$\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} (\pi_s(\mathcal{I}) - \nu)^2$$
$$= \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} (\pi_s(\mathcal{I})^2 - 2\nu\pi_s(\mathcal{I}) + \nu^2),$$

which we will then give the result as

$$S_1 - S_2 + \nu^2$$

From our definition of $\pi_s(\mathcal{I})$,

$$S_1 = \frac{1}{|S|} \sum_{s \in S} (\pi_s(\mathcal{I}))^2$$
$$= \frac{1}{|S|} \sum_{s \in S} \left(\sum_{\substack{i \in \mathcal{I} \\ s \in S_i}} 1\right)^2$$

Now we switch the double sum and get

$$S_{1} = \frac{1}{|S|} \sum_{\substack{i,j \in \mathcal{I} \\ s \in S_{i} \cap S_{j} \\ i \neq j}} \sum_{s \in S_{i} \cap S_{j}} 1$$
$$= \sum_{\substack{i,j \in \mathcal{I} \\ i \neq j}} \frac{|S_{i} \cap S_{j}|}{|S|} \sum_{i \in \mathcal{I}} \frac{|S_{i}|}{|S|}$$

Now we will use $\delta_i, \rho_i, \rho_{i,j}$ and there definitions to get that

$$S_1 = \sum_{\substack{i,j \in \mathcal{I} \\ i \neq j}} \delta_i \delta_j + \rho_{i,j} \sum_{i \in \mathcal{I}} \delta_i + \rho_i$$
$$= \left(\sum_{i \in \mathcal{I}} \delta_i\right)^2 - \sum_{i \in \mathcal{I}} \delta_i^2 + \sum_{i,j \in \mathcal{I}} \rho_{i,j} + \sum_{i \in \mathcal{I}} \delta_i$$

Now we show S_2 as:

$$S_2 = 2\nu \sum_{i \in \mathcal{I}} \delta_i + 2\nu \sum_{i \in \mathcal{I}} \rho_i$$

Now we combine our final equations for \mathcal{S}_1 and \mathcal{S}_2 we get that

$$S_1 - S_2 + \nu^2 = \left(\sum_{i \in \mathcal{I}} \delta_i - \nu\right)^2 + \sum_{i \in \mathcal{I}} \delta_i (1 - \delta_i) + \sum_{i, j \in \mathcal{I}} \rho_{i, j} - 2\nu \sum_{i \in \mathcal{I}} \rho_i$$
$$= \sum_{i \in \mathcal{I}} \delta_i (1 - \delta_i) + \sum_{i, j \in \mathcal{I}} \rho_{i, j} - 2\nu \sum_{i \in \mathcal{I}} \rho_i.$$

This essentially proves the Turán Sieve.

Remark 3.5. Before we go into Turán's proof of the Hardy-Ramanujan theorem we'll show some connections between the Turán Sieve and statistics which are some key insights that Turán used in his proof. The key insight is that our function $\frac{1}{|S|} \sum_{s \in S} (\pi_f(\mathcal{I}) - \nu)^2$ can be viewed as variance.

For every $i \in \mathcal{I}$ we can create a random variable $X_i : \mathcal{S} \to \{0, 1\}$ that has uniform distribution. Now, we can define

$$X_i = \begin{cases} 1 \text{ if } s \in \mathcal{S}_i \\ 0 \text{ if } s \notin \mathcal{S}_i \end{cases}$$

Using that definition we get $E(X_i) = \frac{|S_i|}{|S|} \approx \delta_i$. Now, let $X = \sum_{i \in \mathcal{I}} X_i$ be another discrete random variable with uniform distribution we can get that

$$X(s) = \#\{i \in \mathcal{I} : s \in \Omega(i)\} = \pi_s(\mathcal{I}),$$

and

$$E(X) = \sum_{i \in \mathcal{I}} E(X_i) \approx \sum_{i \in \mathcal{I}} \delta(i) = \nu.$$

Thus,

$$\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} (\pi_s(\mathcal{I}) - \nu)^2 = \operatorname{Var}(X)$$

Again, Turán used the idea of variance and connections with statistics to prove the Hardy-Ramanujan theorem.

Proof. Turán's proof of the Hardy-Ramanujan Theorem

Turán created a function R(N) such that showing $R(N) = O(n\log \log n)$ or in other words, $R(N) \ll n\log \log n$ implies that the Hardy-Ramanujan Theorem is true for $\omega(n)$. His R(N) definition was like the variance idea which we just discussed:

$$R(N) = \sum_{n=1}^{N} (\omega(n) - \log \log N)^2$$

We will use a couple of lemmas to prove this theorem. I will omit their proofs and leave them as an exercise for the reader.

Lemma 3.6.

$$\sum_{n=1}^{N} (\omega(n))^2 = \sum_{i \neq j} \left[\frac{N}{p_i p_j} \right] + \sum_{i} \left[\frac{N}{p_i} \right]$$

Lemma 3.7.

$$\sum_{n=1}^{N} \omega(n) = \sum_{i} \left[\frac{N}{p_i} \right]$$

Lemma 3.8.

$$\sum_{p_i p_k \le N} \frac{1}{p_i p_j} \log \log(N)^2 + O(\log \log(N))$$

Now we will use a consequence of the first and third lemmas we used.

$$\sum_{n=1}^{N} (\omega(n))^2 = N \sum_{p_i p_j \le N} \frac{1}{p_i p_j} + O(N) + N \sum_{p_i \le N} \frac{1}{p_i} + o(N)$$
$$= N (\log \log(N))^2 + O(N \log \log N)$$

Using our second lemma we get that

N 7

$$\sum_{n=1}^{N} \omega(n) = N \sum_{p_i \le N} \frac{1}{p_i} + o(N)$$
$$= N \log \log(N) + o(N),$$

so we get

$$R(N) = \sum_{n=1}^{N} (\omega(N) - \log \log (N))^2$$
$$= \sum_{n=1}^{N} (\omega(n))^2 - 2\log \log(N) \sum_{n=1}^{N} \omega(N) + (N\log \log(N))^2$$
$$= O(N\log \log(N))$$

Now it is simple to deduce the Hardy-Ramanujan theorem.

As I said Turán gave a much simpler proof 17 years after Hardy and Ramanujan's first proof. It was really long and extensive and frankly not as cohesive as Turán's proof. For those reasons I will leave you with only Turán's proof.

4. Erdős-Kac Theorem

Now we are at the home stretch, finally at the theorem we intended to prove all along. Now just to recall, the Erdős-Kac Theorem says that the probability distribution of

$$\frac{\omega(n) - \log \log N}{\sqrt{\log \log N}} = \Phi(x, y).$$

In other words the probability distribution of that function is the normal distribution.

Definition 4.1. Probability Distribution

The probability distribution is a mathematical function that provides the likelihood of possible results from an experiment. In other words, it is a description of a random phenomenon in terms of the probabilities of events.

Definition 4.2. Strongly Additive

A function f is said to be strongly additive if we have some $n = p_1^{e_1} \cdots p_k^{e_k}$ and $f(n) = f(p_1) + \ldots + f(p_k)$ where $|f(p)| \le 1$ for every prime number p.

First, lets define two functions and a couple of useful theorems.

Definition 4.3. Define two functions A(n) and B(n) such that

•
$$A(n) = \sum_{p \le n} \frac{f(p)}{p}$$

•
$$B(n) = \sqrt{\sum_{p \le n} \frac{(f(p))^2}{p}}$$

Definition 4.4. The Brun Sieve

Let A be a set of positive integers less than or equal to x and let P be a set of primes. For each p in P, let A_p denote the set of elements of A divisible by p and extend this to let A_d , the intersection of the A_p for p dividing d, when d is a product of distinct primes from P. Further let A_1 denote A itself. Let z be a positive real number and P(z) denote the primes in $P \leq z$. The object of the sieve is to estimate

$$S(A, P, z) = \left| A \bigcup_{p \in P(z)} A_p \right|.$$

We let $|A_d|$ be written as

$$|A_d| = \frac{w(d)}{d}X + R_d$$

where w is multiplicative and X = |A|.

Definition 4.5. Lindeberg Condition

Let $(\Psi, \mathcal{Z}, \mathbb{M})$ be some probability space and $X_k : \Psi \to \mathbb{R}, k \in \mathbb{N}$ be independent random variables which are defined on that set. Let the expect value of X_k and variance of X_k be $\mathbb{E}[X_k] = \mu_k$ and $\mathbb{V}[X_k] = \sigma_k^2$ exist and be finite. The sequence X_k satisfies Lindeberg's condition if

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\left[\left(X_k - \mu_k \right)^2 \cdot \mathbb{1}_{\{X_k - \mu_k \text{ s.t. } \ge \epsilon \cdot s_n\}} \right] = 0$$

Here, we let $\epsilon > 0$ and $\mathbb{1}$ be the indicator function.

Definition 4.6. Central Limit Theorem

The central limit theorem means the random variables

$$Z_n = \frac{\sum_{k=1}^n (X_k - \mu_k)}{s_n}$$

converge to the standard normal, Gaussian, distribution. We get that if Lindeberg's condition holds, then so does the central limit theorem.

Theorem 4.7. Erdős-Kac Theorem

For any fixed $a \leq b$

$$\lim_{x \to \infty} \left(\frac{1}{x} \# \left\{ n \le x \text{ s.t } a \le \frac{\omega(n) - \log \log(n)}{\sqrt{\log \log(n)}} \le b \right\} \right) = \Phi(a, b).$$

Moreover, if f(n) is a strongly additive function then

$$\lim_{x \to \infty} \left(\frac{1}{x} \# \left\{ n \le x \frac{f(n) - A(n)}{B(n)} \right\} \right) = \Phi(a, b)$$

For our proof, we'll use Erős' proof of the theorem. There are several other proofs that I'll encourage you to look at, done by both Halbertstam and Kac.

Proof. Erdős's proof of the Erdős-Kac Theorem We will first write out the definitions and theorems used in this proof:

• Weak Convergence: A sequence $\{F_n\}$ converges weakly to a function F if

 $\lim_{n \to \infty} F_n(x) = F(x) \text{ for all points where } F \text{ is continuous.}$

• Limiting Distribution Function:

Let f be an arithmetic function. Let N be a natural number.

Now, we define
$$F_N(Z) = \nu_N \{n : f(n) \le z\} = \frac{1}{N} \# \{n \le N : f(n) \le z\}.$$

We say that f posses a limiting distribution function F if the sequence $\{F_N\}$ converges weakly to a limit F that is a distribution function.

• Characteristic Functions:

Let F be a distribution function. Then, its characteristic function is

$$\varphi_F(\tau) = \int_{-\infty}^{\infty} \exp(i\tau z) \mathrm{d}F(z)$$

A distribution function is completely characterized by its characteristic function and the characteristic function of Φ is $\varphi_{\Phi}(\tau) = \exp\left(\frac{-\tau^2}{2}\right)$

• Levy's Convergence Theorem:

Let $\{F_n\}$ be a sequence of distribution functions and $\{\varphi_{F_n}\}$ be the corresponding sequence of their characteristic functions. Then $\{F_n\}$ converges weakly to a distribution function F if and only if φ_{F_n} converges pointwise on \mathbb{R} to a function φ that is continuous at 0.

The atomic distribution function for some natural number N is

$$F_N(x) = \frac{1}{N} \# \left\{ n \le N : \frac{\omega(n) - \log \log(N)}{\sqrt{\log \log(N)}} \le x \right\}$$

We will now write the characteristic function of F_N . We get

$$\varphi_{F_N(\tau)} = \int_{-\infty}^{\infty} e^{i\tau z} \mathrm{d}F_N(z).$$

If we take $P = \{\cdots \leq x_{-1} \leq x_0 \leq x_1 \leq \cdots \leq x_i \cdots\}$ be a partition of the real numbers. Then we get can simplify $\varphi_{F_N(\tau)}$

$$= \int_{-\infty}^{\infty} e^{i\tau z} dF_N(z)$$

$$= \lim_{\text{mesh}(P) \to 0} \sum_k e^{zi\tau} \left(F_N(x_k) - F_N(x_{k-1}) \right)$$

$$= \lim_{\text{mesh}(P) \to 0} \sum_k e^{zi\tau} \left(\frac{1}{N} \# \left\{ n \le N : \frac{\omega(n) - \log \log(N)}{\sqrt{\log \log(N)}} \le x_k \right\}$$

$$= \frac{1}{N} \# \left\{ n \le N : \frac{\omega(n) - \log \log(N)}{\sqrt{\log \log(N)}} \le x_{k-1} \right\} \right)$$

$$= \frac{1}{N} \left[\lim_{\text{mesh}(P) \to 0} \sum_k e^{zi\tau} \left(\# \left\{ n \le N : \frac{\omega(n) - \log \log(N)}{\sqrt{\log \log(N)}} \le x_k \right\} \right.$$

$$= \# \left\{ n \le N : \frac{\omega(n) - \log \log(N)}{\sqrt{\log \log(N)}} \le x_{k-1} \right\} \right)$$

$$= \frac{1}{N} \sum_{k=0}^{\max\{\omega(n):n \le N\}} e^{i\tau f(n)}$$
$$= \frac{1}{N} \sum_{n \le N} e^{i\tau f(n)}$$

Now, to find the bounds for $\varphi_{F_n}(\tau)$ we get that

$$\varphi_{F_n}(\tau) = \exp\left(\frac{-\tau^2}{2}\right) \left(1 + O\left(\frac{|\tau| + |\tau|^3}{\sqrt{\log\log(N)}}\right)\right) + O\left(\frac{1}{\log\log(N)}\right)$$

Use the definition of $\varphi_{F_n}(\tau)$ we can let $n \to \infty$ and then we will get $\exp(\frac{-\tau^2}{2}) = \varphi_{\Phi}(\tau)$.

To put more simply, the characteristic function sequence converges pointwise to the characteristic function of the Gaussian distribution.

Now, after applying Levi's continuity theorem we get that

$$\frac{1}{N} \# \{ n \le N : \frac{\omega(n) - \log \log(N)}{\sqrt{\log \log(N)}} \le x \} = \Phi(x, y).$$

Now we have completed the proof and we get that limit distribution the prime divisor counting function is in fact the Gaussian (or normal) distribution with both a mean and a variance of $\log \log(N)$.

5. References

- (1) Weisstein, Eric W. "Erdős-Kac Theorem." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/Erdos-KacTheorem.html
- (2) Riesel, H. "The Erdős-Kac Theorem." Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 158-159, 1994.
- (3) Kac, M. Statistical Independence in Probability, Analysis and Number Theory. New York: Wiley, 1959.
- (4) Ross G. Pinsky, A Natural Probabilistic Model on the Integers and Its Relation to Dickman-Type Distributions and Buchstab's Function, Probability and Analysis in Interacting Physical Systems, 10.1007/978-3-030-15338-0₁0, (267-294), (2019).
- (5) Weisstein, Eric W. "Hardy-Ramanujan Theorem." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/Hardy-RamanujanTheorem.html
- (6) Yu-Ru Liu and M. Ram Murty, Sieve methods in combinatorics, Journal of Combinatorial Theory, Series A, 10.1016/j.jcta.2004.11.004, 111, 1, (1-23), (2005).
- (7) A. E. Ingham, "The distribution of prime numbers" (Cambridge Tracts inMathematics, No. 30, 1932), 8.
- (8) Hoheisel, Sitzungsberichte d. Preuss. A/fad, d. Wise., phys.-math. Kl. (1930),580.
- (9) Turán, P. (2019). On a theorem of Hardy and Ramanujan. 11. 125-133.
- (10) Paul Turán, On a Theorem of Hardy and Ramanujan, Journal of the London Mathematical Society, Volume s1-9,

Issue 4, October 1934, Pages 274–276, https://doi.org/10.1112/jlms/s1-9.4.274