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1. Abstract

In this paper, we will discuss the distribution of the number of prime factors a given integer
has. We will discuss some initial work done by Hardy and Ramanujan which culminated
in the Hardy Ramanujan Theorem. Finally, we’ll discuss the Erdős-Kac theorem, which is
also described as the fundamental theorem of probabilistic number theory. The Erdős-Kac
theorem describes the distribution for the number of prime factors of the integers n up to

x where ω(n) is the number of prime factors as the probability distribution of ω(n)−log log(n)√
log log(n)

converges to the normal distribution. It extends with work of Hardy and Ramanujan in the
Hardy-Ramanujan theorem which says the normal order of ω(n) is log log(n).

2. Important Definitions

Definition 2.1. ω(n)
The function ω(n) yields the number of prime factors dividing n, more formally:

ω(n) = # {pi | n s.t. pi 6= pj∀i, j}
Definition 2.2. The Error Function (erf(x))
The error function yields the error encountered in integrating the normal distribution, ex-
plicitly written as,

erf(x) =
1√
π

∫ x

−x
e

−t2

2 dt

Definition 2.3. Big O notation
f(x) = O(g(x)) means that f and g have the same asymptotic behavior as x→∞.

In more formal terms f(x) = O(g(x)) means that ∀c ≥ 0 ∃k such that |f(x)| ≤ c·g(x) ∀x ≥ k

Definition 2.4. Little o notation
The o notation is a stronger version of the O notation in the sense that f(x) = o(g(x)) means

limn→∞
f(x)
g(x)

= 0.

Definition 2.5. Normal Order
A function f(x) has the normal order g(x) if f(x) ≈ g(x) for almost all values of x. More
formally:

(1− ε)g(x) ≤ f(x) ≤ (1 + ε)g(x) ∀ε > 0

Definition 2.6. Gaussian (Normal) Distribution
We defined the error function for this earlier to be our erf(x). However, the Gaussian
distribution is defined here:

Φ(x, y) =
1√
2π

∫ y

x

e
−t2

2
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3. The Hardy-Ramanujan Theorem

Theorem 3.1. The Hardy-Ramanujan Theorem
The Hardy-Ramanujan Theorem says that if you define a function f(n) = o(nk), then

|ω(n)− log(log(n))| < f(n)
√

log(log(n))

In simpler terms, this theorem essentially states that the normal order of the number of
distinct prime factors of a number is approximately log(log(n)). We can thus write this
theorem more compactly as

|ω(n)− log(log(n))| < log(log(n))
1
2

+εfor almost all n ∈ Z.
The almost always essentially means let ρ(x) be the number of positive integers n ≤ x for

which the inequality fails, then ρ(x)
x
→ 0 as x → ∞, so for larger and larger numbers, the

ratio of failed integers up to x compared to total integers approaches zero.
Now, let’s go into the history of this development. Hardy and Ramanujan proved this

together in 1917; however, 17 years later this was actually proved in 1934 by Paul Turán
using the Turán sieve, a much more innovative proof technique.

The Turán sieve is a technique used to estimate the size of sifted sets of positive integers
which satisfy certain conditions expressed by congruences. This sieve gives the upper bound
of the size of a sifted set and it is derived from an elementary form of inclusion/exclusion
principle. Now, before we state the Turán sieve we will use a couple of definitions used in
the proof, which should hopefully make the Sieve seem less daunting and abstract.

Definition 3.2. Pre-proof Definitions

(1) Let S be a finite set and I be an index set. Then, ∀i ∈ I, let Ω(i) denote some
arbitrary conditions to be satisfied, then, we define

Si = {s ∈ S s.t. s satisfies Ω(i)}
(2) Using the same Ω(i) and as in the last definition, ∀s ∈ S, we’ll define

πs(I) = #{i ∈ I s.t. s satisfies Ω(i)}
(3) Now, let’s define two constants, δi and ρi such that δi is significantly larger than ρi

we get that
|Si|
|S|

= δi + ρi.

Think of these as a quotient and remainder.
(4) If we choose some i, j ∈ I s.t. i 6= j, then

|Si ∪ Sj|
|S|

= δiδj + ρiρj,

where δiδj is significantly larger than ρiρj. Again, δi is an approximation whereas ρi
is a remainder/error term.

Now, we write out the Turán Sieve.

Theorem 3.3. The Turán Sieve
Let ν =

∑
i∈I δi. Then,

1

|S|
∑
s∈S

(πs(I)− ν2) =
∑
i∈I

δi(1− δi) +
∑
i,j∈I

ri,j − 2ν
∑
i∈I

ri
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Before the proof a corollary:

Corollary 3.4.

#{s ∈ S : πs(I) = 0} ≤ |S|
ν

+
|S|
ν2

∑
i,j∈I

|ρi,j|+ 2|S|
∑
i∈I

|ρi|

Proof. Proof of the Turán Sieve

1

|S|
∑
s∈S

(πs(I)− ν)2

=
1

|S|
∑
s∈S

(πs(I)2 − 2νπs(I) + ν2),

which we will then give the result as

S1 − S2 + ν2

From our definition of πs(I),

S1 =
1

|S|
∑
s∈S

(πs(I))2

=
1

|S|
∑
s∈S

(∑
i∈I
s∈Si

1
)2

Now we switch the double sum and get

S1 =
1

|S|
∑
i,j∈I

∑
s∈Si∩Sj

1

=
∑
i,j∈I
i 6=j

|Si ∩ Sj|
|S|

∑
i∈I

|Si|
|S|

Now we will use δi, ρi, ρi,j and there definitions to get that

S1 =
∑
i,j∈I
i 6=j

δiδj + ρi,j
∑
i∈I

δi + ρi

=
(∑
i∈I

δi
)2 −

∑
i∈I

δ2
i +

∑
i,j∈I

ρi,j +
∑
i∈I

δi

Now we show S2 as:

S2 = 2ν
∑
i∈I

δi + 2ν
∑
i∈I

ρi

Now we combine our final equations for S1 and S2 we get that

S1 − S2 + ν2 =
(∑
i∈I

δi − ν
)2

+
∑
i∈I

δi(1− δi) +
∑
i,j∈I

ρi,j − 2ν
∑
i∈I

ρi

=
∑
i∈I

δi(1− δi) +
∑
i,j∈I

ρi,j − 2ν
∑
i∈I

ρi.

This essentially proves the Turán Sieve. �
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Remark 3.5. Before we go into Turán’s proof of the Hardy-Ramanujan theorem we’ll show
some connections between the Turán Sieve and statistics which are some key insights that
Turán used in his proof. The key insight is that our function 1

|S|
∑

s∈S(π∫ (I) − ν)2 can be

viewed as variance.
For every i ∈ I we can create a random variable Xi : S → {0, 1} that has uniform

distribution. Now, we can define

Xi =

{
1 if s ∈ Si
0 if s 6∈ Si

Using that definition we get E(Xi) = |Si|
|S| ≈ δi. Now, let X =

∑
i∈I Xi be another discrete

random variable with uniform distribution we can get that

X(s) = #{i ∈ I : s ∈ Ω(i)} = πs(I),

and

E(X) =
∑
i∈I

E(Xi) ≈
∑
i∈I

δ(i) = ν.

Thus,
1

|S|
∑
s∈S

(πs(I)− ν)2 = Var(X)

Again, Turán used the idea of variance and connections with statistics to prove the Hardy-
Ramanujan theorem.

Proof. Turán’s proof of the Hardy-Ramanujan Theorem
Turán created a function R(N) such that showing R(N) = O(nlog logn) or in other words,
R(N)� nlog logn implies that the Hardy-Ramanujan Theorem is true for ω(n). His R(N)
definition was like the variance idea which we just discussed:

R(N) =
N∑
n=1

(ω(n)− log logN)2

We will use a couple of lemmas to prove this theorem. I will omit their proofs and leave
them as an exercise for the reader.

Lemma 3.6.
N∑
n=1

(ω(n))2 =
∑
i 6=j

[
N

pipj

]
+
∑
i

[
N

pi

]
Lemma 3.7.

N∑
n=1

ω(n) =
∑
i

[
N

pi

]
Lemma 3.8. ∑

pipk≤N

1

pipj
log log(N)2 +O(log log(N))



ERDŐS-KAC THEOREM 5

Now we will use a consequence of the first and third lemmas we used.

N∑
n=1

(ω(n))2 = N
∑

pipj≤N

1

pipj
+O(N) +N

∑
pi≤N

1

pi
+ o(N)

= N(log log(N))2 +O(N log logN)

Using our second lemma we get that

N∑
n=1

ω(n) = N
∑
pi≤N

1

pi
+ o(N)

= N log log(N) + o(N),

so we get

R(N) =
N∑
n=1

(ω(N)− log log (N))2

=
N∑
n=1

(ω(n))2 − 2log log(N)
N∑
n=1

ω(N) + (N log log(N))2

= O(N log log(N))

Now it is simple to deduce the Hardy-Ramanujan theorem. �

As I said Turán gave a much simpler proof 17 years after Hardy and Ramanujan’s first
proof. It was really long and extensive and frankly not as cohesive as Turán’s proof. For
those reasons I will leave you with only Turán’s proof.

4. Erdős-Kac Theorem

Now we are at the home stretch, finally at the theorem we intended to prove all along.
Now just to recall, the Erdős-Kac Theorem says that the probability distribution of

ω(n)− log logN√
log logN

= Φ(x, y).

In other words the probability distribution of that function is the normal distribution.

Definition 4.1. Probability Distribution
The probability distribution is a mathematical function that provides the likelihood of possi-
ble results from an experiment. In other words, it is a description of a random phenomenon
in terms of the probabilities of events.

Definition 4.2. Strongly Additive
A function f is said to be strongly additive if we have some n = pe11 · · · p

ek
k and f(n) =

f(p1) + ...+ f(pk) where |f(p)| ≤ 1 for every prime number p.

First, lets define two functions and a couple of useful theorems.

Definition 4.3. Define two functions A(n) and B(n) such that

• A(n) =
∑

p≤n
f(p)
p

• B(n) =
√∑

p≤n
(f(p))2

p
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Definition 4.4. The Brun Sieve
Let A be a set of positive integers less than or equal to x and let P be a set of primes. For
each p in P , let Ap denote the set of elements of A divisible by p and extend this to let Ad,
the intersection of the Ap for p dividing d, when d is a product of distinct primes from P .
Further let A1 denote A itself. Let z be a positive real number and P (z) denote the primes
in P ≤ z. The object of the sieve is to estimate

S(A,P, z) =
∣∣A ⋃

p∈P (z)

Ap
∣∣.

We let |Ad| be written as

|Ad| =
w(d)

d
X +Rd

where w is multiplicative and X = |A|.

Definition 4.5. Lindeberg Condition
Let (Ψ,Z,M) be some probability space and Xk : Ψ → R, k ∈ N be independent random
variables which are defined on that set. Let the expect value of Xk and variance of Xk

be E[Xk] = µk and V[Xk] = σ2
k exist and be finite. The sequence Xk satisfies Lindeberg’s

condition if

lim
n→∞

1

s2
n

n∑
k=1

E
[(
Xk − µk

)2 · 1{Xk−µk s.t. ≥ε·sn}
]

= 0

Here, we let ε > 0 and 1 be the indicator function.

Definition 4.6. Central Limit Theorem
The central limit theorem means the random variables

Zn =

∑n
k=1(Xk − µk)

sn

converge to the standard normal, Gaussian, distribution. We get that if Lindeberg’s condition
holds, then so does the central limit theorem.

Theorem 4.7. Erdős-Kac Theorem
For any fixed a ≤ b

lim
x→∞

(
1

x
#
{
n ≤ x s.t a ≤ ω(n)− log log(n)√

log log(n)
≤ b
})

= Φ(a, b).

Moreover, if f(n) is a strongly additive function then

lim
x→∞

(
1

x
#
{
n ≤ x

f(n)− A(n))

B(n)

})
= Φ(a, b)

For our proof, we’ll use Erős’ proof of the theorem. There are several other proofs that
I’ll encourage you to look at, done by both Halbertstam and Kac.

Proof. Erdős’s proof of the Erdős-Kac Theorem We will first write out the definitions
and theorems used in this proof:

• Weak Convergence: A sequence {Fn} converges weakly to a function F if

lim
n→∞

Fn(x) = F (x) for all points where F is continuous.
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• Limiting Distribution Function:

Let f be an arithmetic function. Let N be a natural number.

Now, we define FN(Z) = νN{n : f(n) ≤ z} =
1

N
#{n ≤ N : f(n) ≤ z}.

We say that f posses a limiting distribution function F if the sequence {FN}
converges weakly to a limit F that is a distribution function.
• Characteristic Functions:

Let F be a distribution function. Then, its characteristic function is

ϕF (τ) =

∫ ∞
−∞

exp(iτz)dF (z)

A distribution function is completely characterized by its characteristic function and
the characteristic function of Φ is ϕΦ(τ) = exp

(−τ2
2

)
• Levy’s Convergence Theorem:

Let {Fn} be a sequence of distribution functions and {ϕFn} be the corresponding
sequence of their characteristic functions. Then {Fn} converges weakly to a distri-
bution function F if and only if ϕFn converges pointwise on R to a function ϕ that
is continuous at 0.

The atomic distribution function for some natural number N is

FN(x) =
1

N
#
{
n ≤ N :

ω(n)− log log(N)√
log log(N)

≤ x
}

We will now write the characteristic function of FN . We get

ϕFN (τ) =

∫ ∞
−∞

eiτzdFN(z).

If we take P = {· · · ≤ x−1 ≤ x0 ≤ x1 ≤ · · · ≤ xi · ··} be a partition of the real numbers.
Then we get can simplify ϕFN (τ)

=

∫ ∞
−∞

eiτzdFN(z)

= lim
mesh(P )→0

∑
k

eziτ
(
FN(xk)− FN(xk−1)

)
= lim

mesh(P )→0

∑
k

eziτ
( 1

N
#
{
n ≤ N :

ω(n)− log log(N)√
log log(N)

≤ xk
}

=
1

N
#
{
n ≤ N :

ω(n)− log log(N)√
log log(N)

≤ xk−1

})
=

1

N

[
lim

mesh(P )→0

∑
k

eziτ
(
#
{
n ≤ N :

ω(n)− log log(N)√
log log(N)

≤ xk
}

= #
{
n ≤ N :

ω(n)− log log(N)√
log log(N)

≤ xk−1

})]
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=
1

N

max{ω(n):n≤N}∑
k=0

eiτf(n)

=
1

N

∑
n≤N

eiτf(n)

Now, to find the bounds for ϕFn(τ) we get that

ϕFn(τ) = exp
(−τ 2

2

)(
1 +O

( |τ |+ |τ |3√
log log(N)

))
+O

( 1

log log(N)

)
Use the definition of ϕFn(τ) we can let n→∞ and then we will get exp(−τ

2

2
) = ϕΦ(τ).

To put more simply, the characteristic function sequence converges pointwise to the char-
acteristic function of the Gaussian distribution.

Now, after applying Levi’s continuity theorem we get that

1

N
#{n ≤ N :

ω(n)− log log(N)√
log log(N)

≤ x} = Φ(x, y).

Now we have completed the proof and we get that limit distribution the prime divisor
counting function is in fact the Gaussian (or normal) distribution with both a mean and a
variance of log log(N).

�
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