THE WIENER-IKEHARA THEOREM AND THE PRIME NUMBER THEOREM

JONATHAN SY

1. INTRODUCTION AND PRELIMINARY NOTIONS

In this paper, we give a complex-analytic proof of the prime number theorem, following Korevaar closely. We first show that $\psi(n) \sim n$ is equivalent to the prime number theorem, then show the relation itself, and finally we prove a special case of the Wiener-Ikahara theorem and derive the relation from it.

Definition 1.1 (Dirichlet Series). A *Dirichlet series* is a series of the form

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s},$$

where s is complex and a_n is a sequence of complex numbers.

Theorem 1.2 (Wiener-Ikahara). Suppose that the Dirichlet series

$$\sum_{n=1}^{\infty} \frac{a_n}{n^z}, \quad with \ coefficients \ a_n \ge 0,$$

converges on the half-plane $\{\Re z > 1\}$. The sum function f(z) is analytic in that open half-plane, so suppose that there is a constant A such that the difference

$$g(z) = f(z) - \frac{A}{z-1}$$

has an analytic or continuous extension to the closed half-plane $\{\Re z \ge 1\}$. Also, suppose that there is a constant C such that $s_n = \sum_{k \le n} a_k \le Cn$ for all n. Then

$$s_n \sim An \quad as \ n \to \infty.$$

Equivalently, $s_n/n \to A$.

Definition 1.3. Let

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \text{ for some prime } p \text{ and integer } k \ge 1\\ 0 & \text{otherwise} \end{cases}$$

Definition 1.4. Let

$$\psi(x) = \sum_{n \le x}^{x} \Lambda(n).$$

Theorem 1.5. For $\psi(n)$ defined as above,

$$\psi(n) \sim n$$
.

Theorem 1.6. Theorem 1.5 is equivalent to the prime number theorem.

Date: June 15, 2019.

JONATHAN SY

2. Proving Theorem 1.6

We begin with a lemma.

Lemma 2.1. $\psi(x) \sim \pi(x) \log x$

Proof. First, we show that $\psi(x) \leq \pi(x) \log x$. Note that we have

$$\psi(x) = \sum_{p \le x} \log p \left\lfloor \frac{\log x}{\log p} \right\rfloor \le \sum_{p \le x} \log(x) = \pi(x) \log x.$$

For the other direction, let $\epsilon > 0$. Then we have

$$\psi(x) \ge \sum_{x^{1-\epsilon} \le p \le x} \log p \ge \sum_{x^{1-\epsilon} \le p \le x} (1-\epsilon) \log x = (1-\epsilon)(\pi(x) + O(x^{1-\epsilon})) \log x.$$

As this holds for arbitrarily small ϵ , it follows that $\psi(x) \sim \pi(x) \log x$.

Now assume Theorem 1.5. We get $x \sim \pi(x) \log x$, or $\pi(x) \sim \frac{x}{\log x}$, as desired. Now assume PNT. We have $\psi(x) \sim \pi(x) \log x$, or $\psi(x) \sim \frac{x}{\log x} \log x \sim x$, as we wanted. This proves 1.6

3. Proving Theorem 1.5

We want to use Theorem 1.2 with A = 1, $s_n = \psi(n)$, and $a_n = \Lambda(n)$. In order to get there, we begin with the zeta function, which can be represented by its Euler product:

$$\zeta(z) = \prod_{p \text{ prime}} \left(1 + \frac{1}{p^z} + \frac{1}{p^{2z}} + \cdots \right) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-z}}$$

Taking the logarithmic derivative of this gives

$$\begin{aligned} \frac{\zeta(s)'}{\zeta(s)} &= \left(\log \prod_{p \text{ prime}} (1 - p^{-z})^{-1} \right)' \\ &= \left(\sum_{p \text{ prime}} \log(1 - p^{-z})^{-1} \right)' \\ &= -\sum_{p \text{ prime}} \left(\log(1 - p^{-z}) \right)' \\ &= -\sum_{p \text{ prime}} \frac{p^{-z} \log p}{1 - p^{-z}} \\ &= \sum_{p \text{ prime}} \frac{\log p}{1 - p^z} \\ &= \sum_{p \text{ prime}, m \ge 1} \frac{\log p}{p^{mz}} \\ &= \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^z}, \end{aligned}$$

where the last equality holds since $\Lambda(n) = 0$ whenever n is not a power of p. Hence, let

$$f_1(z) = \frac{\zeta(s)'}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^z}$$

In order to use 1.2, we need to be able to extend $f_1(z)$ to a function $g_1(z)$ that is also analytic on the line $\{\Re(z) = 1\}$. We will assume the following lemma:

Lemma 3.1. $\zeta(z) \neq 0$ on the line $\{\Re(z) = 1\}$, except for z = 1.

It follows that $\frac{-\zeta(z)'}{\zeta(z)}$ is analytic on $\{\Re(s) = 1\}$ except for at s = 1. For s = 1 we use the following lemma:

Lemma 3.2. As $s \to 1$, $\zeta(s) \sim \frac{1}{s-1}$.

Proof. We apply the following slightly modified form of Euler's Summation Formula: Let $\phi(x)$ be any function that is differentiable with a continuous derivative on the closed interval [a, b]. Then we have that $\sum_{a < n < b} \phi(n)$ is equal to the following:

$$\int_{a}^{b} \phi(x)dx + \int_{a}^{b} \left(x - \lfloor x \rfloor - \frac{1}{2}\right)\phi'(x)dx + \left(a - \lfloor a \rfloor - \frac{1}{2}\right)\phi(a) - \left(b - \lfloor b \rfloor - \frac{1}{2}\right)\phi(b).$$

The proof of this result is left to the reader.

Applying this to the function $\phi(x) = x^{-s}$ yields

$$\sum_{a=a+1}^{b} = \frac{b^{1-s} - a^{1-s}}{1-s} - s \int_{a}^{b} \frac{x - \lfloor x \rfloor - \frac{1}{2}}{x^{s+1}} dx + \frac{1}{2} \left(\frac{1}{b^{s}} - \frac{1}{a^{s}} \right).$$

Letting $a = 1, b \to \infty$, adding 1 to both sides, and assuming that $\mathcal{R}(s) > 1$, yields $\zeta(s)$, so

$$\zeta(s) = \frac{1}{s-1} + s \int_1^\infty \frac{\lfloor x \rfloor - x + \frac{1}{2}}{x^{s+1}} dx + \frac{1}{2}.$$

The result follows.

Hence, the function $g_1(z) = f_1(z) - \frac{1}{z-1}$ is analytic on $\Re(s) \ge 1$. We now need a bound C such that $s_n = \psi(n) \le Cn$ for all n. We obtain this using Chebyshev's inequality:

Lemma 3.3. There exists a constant C such that $\pi(n) \leq C \frac{n}{\log n}$

Proof. Note that $n^{\pi(2n)-\pi(n)} \leq \prod_{n , as every prime <math>p$ with n appears once in <math>2n! but never in n!. Taking \log_n on both sides, we get $\pi(2n) \leq \pi(n) + 2\log 2\frac{n}{\log n}$. Using induction, it is easy to show that $\pi(2^k) \leq 3 \cdot \frac{2^k}{k}$: by the previous inequality, we have that when $k \geq 5$,

$$\pi(2^{k+1}) \le \pi(2^k) + \frac{2^{k+1}}{k} \le 3 \cdot \frac{2^k}{k} + 2 \cdot \frac{2^k}{k} = 5 \cdot \frac{2^k}{k} \le 3 \cdot \frac{2^{k+1}}{k+1}$$

But $\frac{x}{\log x}$ is a monotonically increasing function, so $4 \le 2^k < x \le 2^{k+1}$ implies

$$\pi(x) \le \pi(2^{k+1}) \le 6 \cdot \frac{2^k}{k+1} \le 6 \cdot \frac{2^k}{k-1} = 6\log 2\frac{2^k}{\log 2^k} \le 6\log \frac{x}{\log x}$$

It's easy to check that $\pi(x) \leq 6 \log 2 \frac{x}{\log x}$ when $x \leq 4$, so the proof is complete.

Using Lemma 3.3, we have

$$\psi(n) = \sum_{p \le n} \left(\frac{\log n}{\log p}\right) \log p = \log n \sum_{p \le n} 1 = \pi(n) \log(n) \le Cn.$$

Thus, with A = 1, $s_n = \psi(n)$, and $a_n = \Lambda(n)$, the assumptions of Theorem 1.2 hold. It follows then that $\psi(n) \sim n$, as desired.

4. Proof of Theorem 1.2

Assume the conditions of Theorem 1.2 hold. Let

$$s(v) = \sum_{k \le v} a_k,$$

which means that $s(v) = s_n$ when $n \le v < n+1$ and s(v) = 0 when v < 1. Now, partial summing 1.2 gives

$$f(z) = \sum_{n=1}^{\infty} \frac{s_n - s_{n-1}}{n^z}.$$

But note that each s_m will be multiplied first by $\frac{1}{m^z}$ when n = m, and then by $-\frac{1}{(m+1)^{z+1}}$ when n = m + 1, and so we can rewrite the sum as

$$\sum_{n=1}^{\infty} s_n \left(\frac{1}{n^z} - \frac{1}{(n+1)^z} \right).$$

By inserting a factor of z, we can rewrite the summand as an integral, and then combine the integrals to obtain f(z) as an integral in terms of z:

$$f(z) = \sum_{n=1}^{\infty} s_n z \int_n^{n+1} v^{-z-1} dv$$
$$= z \int_1^{\infty} s(v) v^{-z-1} dv$$

Using this, we can rewrite g(z) - A as:

$$g(z) - A = f(z) - \frac{A}{z - 1} - A$$

= $f(z) - \frac{Az}{z - 1}$
= $z \left(\int_1^\infty s(v)v^{-z - 1}dv - \int_1^\infty Av^{-z}dv \right)$
= $z \int_1^\infty \left(\frac{s(v)}{v} - A \right) v^{-z}dv$

Now substitute

$$v = e^t, \frac{s(v)}{v} - A = e^{-t}s(e^t) = \rho(t),$$

and let $\rho(t) = 0$ when t < 0. But for $t > u \ge 0$, we have $s(e^t) \ge s(e^u)$, and so $\rho(t) - \rho(u) = e^{-t}s(e^t) - e^{-u}s(e^u)$ $\ge (e^{-t} - e^{-u})s(e^u)$ $= (e^{-(t-u)} - 1)e^{-u}s(e^u)$ $= -(1 - e^{-(t-u)})(\rho(u) + A)$ $\ge -(t-u)(\rho(u) + A).$

As a function that satisfies $f(t) - f(u) \ge -\mu(t, u)$ when $\mu(t, u) \to 0$ as $u \to \infty$ and $0 < t - u \to 0$ is called *slowly decreasing*, ρ is slowly decreasing. Now consider the following Laplace transform of ρ :

$$\mathcal{L}\rho(z) = \int_0^\infty \rho(t)e^{-zt}dt$$
$$= \int_0^\infty \left(\frac{s(v)}{v} - A\right)v^{-z-1}dv$$
$$= \frac{g(z+1) - A}{z+1}.$$

Hence, we have to prove that as $t \to \infty$, $\rho(t) \to 0$.

The following theorem will suffice then:

Theorem 4.1. Let $\rho(t) = 0$ for t < 0 and $|\rho(t)| \ge M < \infty$ for $t \ge 0$. Then the Laplace transform

$$G(z) = \mathcal{L}\rho(z) = \int_0^\infty \rho(t)e^{-zt}dt, z = x + yi$$

defines an analytic function for x > 0. Suppose that for $-R \le y \le R$, the function g(x+yi) converges uniformly to a limit function as x approaches 0 from the positive side. Then for every positive T and δ ,

$$\left| \int_{T}^{T+\delta} \rho(t) dt \right| \leq \frac{4M}{R} + \frac{1}{2\pi} \left| \int_{-R}^{R} G(iy) \frac{e^{i\delta y} - 1}{y} \left(1 - \frac{y^2}{R^2} \right) e^{iTy} dy. \right|$$

If R can be arbitrarily large, and ρ is slowly decreasing, then

$$\rho(T) \to 0 \ as \ T \to \infty.$$

5. Proof of 4.1

Proof. Let $G_T(z) = \int_0^T \rho(t) e^{-zt} dt$, where z = x + yi. Our goal is to estimate the difference

$$G_{T+\delta}(0) - G_T(0) = \int_T^{T+\delta} \rho(t) dt$$

Let Γ be the positively oriented circle $C(0, R) = \{|z| = R\}$. Using Cauchy's formula, we have

$$2\pi i G_T(0) = \int_{\Gamma} G_T(z) \frac{1}{z} dz.$$

When T is large, and z is in the right half of the plane $(\Re(z) > 0)$, we have

$$|G_T(z) - G(z)| = \left| \int_T^\infty \rho(t) e^{-zt} dt \right| \le M \int_T^\infty e^{-xt} dt = \frac{M}{x} e^{-Tx}$$

Similarly, one can find

$$|G_T(z)| = \left| \int_0^T \rho(t) e^{-zt} dt \right| \le \int_0^T e^{-xt} dt < \frac{M}{|x|} e^{-Tx}.$$

If we replace the $\frac{1}{z}$ in the Cauchy formula with $\frac{1}{z} + \frac{z}{R^2}$ and insert a factor of e^{Tz} into the integrand, we get

$$2\pi i G_T(0) = \int_{\Gamma} G_T(z) e^{Tz} \left(\frac{1}{z} + \frac{z}{R^2}\right) dz$$

by the residue theorem.

Now we want to do something similar but with G(z). The problem is that G(z) need not be analytic when $\Re(z) < 0$, and so we can't integrate over the entirety of Γ . Instead, we apply Cauchy's theorem to

$$G(z)e^{Tz}\left(\frac{1}{z} + \frac{z}{R^2}\right)$$

over a path that lies entirely in the right half-plane. In order to do this, we introduce some paths of integration. Let Γ_1 and Γ_2 be the parts of Γ in the right and left half-planes, respectively. Let σ be the oriented segment of the imaginary axis from iR to -iR. Finally, when r is small let σ_r be the oriented segment of the line x = r between $z_1 = r + \sqrt{R^2 - r^2}$ and $z_2 = r - i\sqrt{R^2 - r^2}$ on Γ . We refer to this part of Γ_1 as $\Gamma_{1,r}$. By Cauchy's theorem, then, we have

$$0 = \int_{\Gamma_1, r+\sigma_r} G(z) e^{Tz} \left(\frac{1}{z} + \frac{z}{R^2}\right) dz$$

Combining the above expressions, and assuming that r > 0 is small, we get that

$$2\pi i G_T(0) = I_1(R, r, T) + I_2(R, r, T) - I_3(R, r, T),$$

where

$$I_{1}(R, r, T) = \int_{\Gamma_{1,r}} (G_{T}(z) - G(z))e^{Tz} \left(\frac{1}{z} + \frac{z}{R^{2}}\right) dz$$
$$L_{2}(R, r, T) = \int_{\Gamma-\Gamma_{1,r}} G_{T}(z)e^{Tz} \left(\frac{1}{z} + \frac{z}{R^{2}}\right) dz$$
$$L_{3}(R, r, T) = \int_{\sigma_{r}} G_{T}(z)e^{Tz} \left(\frac{1}{z} + \frac{z}{R^{2}}\right) dz$$

There is an analogous formula for $G_{T+\delta}(z)$. Since we seek to estimate $G_{T+\delta}(z) - G(z)$, note that

$$\begin{split} I_3(R, r, T+\delta) - I_3(R, r, T) &= \int_{\sigma_r} G(z) (e^{(T+\delta)z} - e^{Tz}) \left(\frac{1}{z} + \frac{z}{R^2}\right) dz \\ &= \int_{\sigma_r} G(z) \frac{e^{\delta z} - 1}{z} \left(1 + \frac{z^2}{R^2}\right) e^{Tz} dz \end{split}$$

As we assume that G(x+yi) converges uniformly as x approaches 0, we can let r go to 0 in this expression. We can also do the same for the corresponding expression for $G_{T+\delta}(0) - G_T(0)$.

Let $I_j(R, 0, \cdot)$ be the integrals with $\Gamma_{1,r}$ replaced with Γ_1 and σ_r replaced with σ . Putting these expressions together, we get

$$2\pi |G_{T+\delta}(0) - G_T(0)| \le I_1(R,0,T+\delta) - I_2(R,0,T+\delta) - I_2(R,0,T)| + \int_{\delta} G(z) \frac{e^{\delta z}}{z} \left(1 + \frac{z^2}{R^2}\right) e^{Tz} dz.$$

From above, we can derive that

$$|I_1(R,0,T)| \leq \int_{\Gamma_1} |G_T(z) - G(z)|e^{Tz}| \left| \frac{1}{z} + \frac{z}{R^2} \right|$$
$$\leq \int_{\Gamma_1} \frac{M}{x} e^{-Tx} e^{Tx} \frac{2x}{R^2} |dz|$$
$$= \frac{2M}{R^2} \pi R$$
$$= \frac{2\pi M}{R}$$

We also have

$$|I_2(R,0,T)| \leq \int_{\Gamma_2} |G_T(z)e^{Tz} \left| \frac{1}{z} + \frac{z}{R^2} \right| |dz|$$
$$= \frac{2\pi M}{R}$$

Substituting the last few expressions into our desired difference and dividing by 2π we obtain

$$\left|\int_{T}^{T+\delta}\right| \leq \frac{4M}{R} + \frac{1}{2\pi} \int_{\sigma} G(z) \frac{e^{\delta z}}{z} \left(1 + \frac{z^2}{R^2}\right) e^{Tz} dz.$$

Substituting z = iy for $-R \le y \le R$ immediately gives the desired bound. It suffices then to show that $\rho(t) \to 0$ as $t \to 0$ under the assumptions listed.

6.
$$\rho(t) \to 0 \text{ As } t \to 0$$

If the G(iy) are continuous or integrable, we use the Riemann-Lebesgue lemma, which tells us that the integral vanishes at infinity. If G(z) is analytic on the segment [-iR, iR], then integration by parts gives $e^{iTy}dy = (\frac{1}{iT})de^{iTy}$. In either case, we get

$$\lim \sup_{T \to \infty} \left| \int_{T}^{T+\delta} \rho(t) dt \right| \le \frac{4M}{R}$$

Now suppose R is arbitrarily large. Then for every $\delta > 0$, as $T \to \infty$ we have

$$\int_{T}^{T+\delta} \rho(t) dt \to 0$$

Finally, assume that $\rho(t)$ is slowly decreasing. Then integrating both sides of $\rho(t) - \rho(u) \ge -\eta(t,T)$ from T to $T + \delta$ and using the above shows that $\limsup_{T\to\infty} \delta\rho(T) \le \epsilon\delta$ and $\limsup_{T\to\infty} \rho(T) \le \epsilon$. Hence, $\limsup_{T\to\infty} \rho(T) \le 0$. Using say $\int_{T-\delta}^{T} \rho(t) dt$, we can obtain an inequality in the other direction, finishing the proof.

Euler Circle, Palo Alto, CA 94306