THE WIENER-IKEHARA THEOREM AND THE PRIME NUMBER
THEOREM

JONATHAN SY

1. INTRODUCTION AND PRELIMINARY NOTIONS

In this paper, we give a complex-analytic proof of the prime number theorem, following
Korevaar closely. We first show that ¢)(n) ~ n is equivalent to the prime number theorem,
then show the relation itself, and finally we prove a special case of the Wiener-Ikahara
theorem and derive the relation from it.

Definition 1.1 (Dirichlet Series). A Dirichlet series is a series of the form

o0
an

)
ns
n=1

where s is complex and a,, is a sequence of complex numbers.

Theorem 1.2 (Wiener-lIkahara). Suppose that the Dirichlet series
 a, . .
E —, with coefficients a,, > 0,
nZ
n=1

converges on the half-plane {Rz > 1}. The sum function f(z) is analytic in that open
half-plane, so suppose that there is a constant A such that the difference

A

9(z) = f(2) — p—

has an analytic or continuous extension to the closed half-plane {Rz > 1}. Also, suppose
that there is a constant C such that s, = Zkgn ar < Cn for all n. Then

Sp~An  asn — oo.
Equivalently, s,/n — A.
Definition 1.3. Let
A(n) = {Ing itn = pf“ for some prime p and integer k > 1
0 otherwise

Definition 1.4. Let

Y(x) =D An).

n<x
Theorem 1.5. For ¢ (n) defined as above,
b(n) ~n.
Theorem 1.6. Theorem [1.5 is equivalent to the prime number theorem.
Date: June 15, 2019.



2 JONATHAN SY
2. PROVING THEOREM
We begin with a lemma.
Lemma 2.1. ¢(z) ~ 7(z)logz
Proof. First, we show that ¢(z) < 7(z)logz. Note that we have

Y(x) =) log LOgJ > log(x) z)log .

p<z p<lz

For the other direction, let € > 0. Then we have
Ya)> > logp> > (L—e)logr = (1—e€)(n(x) + Oz ) loga.
zl—e<p<wz zl—e<p<z

As this holds for arbitrarily small e, it follows that ¢ (z) ~ 7(z) log z. [

Now assume Theorem (1.5l We get z ~ m(x)log z, or m(x) ~ 7=, as desired.
Now assume PNT. We have (z) ~ 7(x)log z, or ¢(z) ~ 7 logz ~ z, as we wanted. This

proves [L.6]
3. PROVING THEOREM [L.5]

We want to use Theorem with A =1, s, = ¢¥(n), and a, = A(n). In order to get
there, we begin with the zeta function, which can be represented by its Euler product:

)= 1] (1+é+}%+---): I 1_1pz

p prime p prime

Taking the logarithmic derivative of this gives

= ( Z log(1 —p‘z)‘l)
- _ Z (log(1 —p’z)),

p prime
_ Z P log p
p prime -
- >
p prime 1- p
- >
p prime,m>1 pmz

= Aln
:Z T(Lz)’

n=1
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where the last equality holds since A(n) = 0 whenever n is not a power of p. Hence, let
((s) _ A

file) =% =
()= oy = X

In order to use[L.2] we need to be able to extend f1(z) to a function g (z) that is also analytic
on the line {R(z) = 1}. We will assume the following lemma:

Lemma 3.1. ((z) # 0 on the line {R(z) = 1}, except for z = 1.

It follows that C(ZZ)) is analytic on {R(s) = 1} except for at s = 1. For s = 1 we use the
following lemma:

Lemma 3.2. As s — 1, ((s) ~ 5.

Proof. We apply the following slightly modified form of Euler’s Summation Formula:
Let ¢(z) be any function that is differentiable with a continuous derivative on the closed
interval [a,b]. Then we have that ), _ ., ¢(n) is equal to the following:

/ Sl + / (2= Lot = 5) ot (o= Lol = 3 ) o) = (0= L8) = 5 ) o)

The proof of this result is left to the reader.
Applying this to the function ¢(z) = 2~ yields
b

Z _bl’s—alfs_ by —|x] - d 11
 1-—s ° u x5l bs as )’

n=a+1
Letting a = 1, b — 00, adding 1 to both sides, and assuming that R(s) > 1, yields ((s), so
*le]—a+3 +1 1
C( T _etr1 o
x5t 2
The result follows. u

Hence, the function ¢;(z) = fi(z) — 5 is analytic on R(s) > 1.
We now need a bound C' such that s, = ¥(n) < Cn for all n. We obtain this using
Chebyshev’s inequality:

Lemma 3.3. There exists a constant C' such that w(n) < C'2

logn

Proof. Note that n™m-m(n) < [Thcp<on < (*") < 22", as every prime p with n < p < 2n

appears once in 2n! but never in n!. Taking log, on both sides, we get m(2n) < w(n) +
2log 2%. Using induction, it is easy to show that 7(2%) < 3- %: by the previous inequality,
we have that when k£ > 5,

2k+1 2k 2k 2k: 2k+1
M)y <7r(2")+=——<3.>-4+2.->-=5.-=-<3. :
@) = 7@+ T A
But i~ is a monotonically increasing function, so 4 < 2F < x < 2M 1 implies
" k k k
<728 <6- <6- =6log2—— <6lo
m(@) sm@T) S 657 S 6 gy = Gloa2pop < Glog o

It’s easy to check that 7(x) < 6log 2@ when z < 4, so the proof is complete. [
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Using Lemma |3.3] we have

(n) = Z (logn> logp = lognz 1 =m(n)log(n) < Cn.

log p

p<n p<n

Thus, with A = 1, s, = ¥(n), and a, = A(n), the assumptions of Theorem hold. It
follows then that ¥(n) ~ n, as desired.

4. PROOF OF THEOREM
Assume the conditions of Theorem [1.2] hold. Let

s(v) = Z ag,

k<v

which means that s(v) = s, when n < v <n+ 1 and s(v) = 0 when v < 1. Now, partial

summing [I.2] gives
oo
o Sp = Sn—1
HOE Z_; -

But note that each s,, will be multiplied first by = when n = m, and then by — (

1
m* m+1)z+1
when n = m + 1, and so we can rewrite the sum as

S ).

n=1

By inserting a factor of z, we can rewrite the summand as an integral, and then combine the
integrals to obtain f(z) as an integral in terms of z:

0 n+1
f(z)= Z snz/ v " dv
n=1 n
= z/ s(v)v " tdv
1

Using this, we can rewrite g(z) — A as:

A
z—1
Az

9(z) = A= [f(z) -

I
N
S,
8
2
=
S
&
L
Q.
S
|
8
s
S
&
Q.
S
~

Now substitute
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and let p(t) = 0 when ¢ < 0. But for ¢t > u > 0, we have s(e’) > s(e*), and so

p(t) — pu) = e"'s(e') — e "s(e")
> (e —e")s(e")
= (7% — 1)e us(e)
= —(1—e ) (p(u) + A)
> —(t — u)(p(u) + A).
As a function that satisfies f(t) — f(u) > —p(t,u) when p(t,u) — 0 as u — oo and

0 <t—wu— 0is called slowly decreasing, p is slowly decreasing. Now consider the following
Laplace transform of p:

Lp(z) = /000 p(t)e *dt

_ /OOO (? - A) vy

g(z+1)—A
24+1
Hence, we have to prove that as t — oo, p(t) — 0.
The following theorem will suffice then:

Theorem 4.1. Let p(t) = 0 fort < 0 and |p(t)] > M < oo fort > 0. Then the Laplace
transform

G(z) = Lp(z) = /OOO p(t)e *dt,z =z +yi

defines an analytic function for x > 0. Suppose that for —R < y < R, the function g(x +yi)
converges uniformly to a limit function as x approaches O from the positive side. Then for

every positive T and 6,
R iy _ 2
. (€ Y iT
G 1— = Ydy.
/—R (#) Y < R2> oY '

T+5
AM 1
/ p(t)dt’ <—+—
If R can be arbitrarily large, and p is slowly decreasing, then

T R 2m

p(T) —0as T — oc.

5. PROOF OF 4.1

Proof. Let Gr(z) = fOT p(t)e~#dt, where z = x + yi. Our goal is to estimate the difference
T+5

Gr2s(0) — Gr(0) = / plt)dt.

T
Let T' be the positively oriented circle C(0, R) = {|z| = R}. Using Cauchy’s formula, we
have

1
2miGr(0) = / Gr(2) 2z,
r
When T is large, and z is in the right half of the plane (R(z) > 0, we have

o0 oo M
/ p(t)e #dt| < M/ e dt = —e "
T x

T

Gr(2) = G(2)] =
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T T
M
/ p(t)e‘ztdt‘ < / e "t < —e T,
0 0 ||
1

If we replace the - in the Cauchy formula with % + #z and insert a factor of el* into the

integrand, we get
1
. _ Tz
2miGr(0) = /FGT(z)e ( R2> dz
by the residue theorem.

Now we want to do something similar but with G(z). The problem is that G(z) need not be
analytic when $(z) < 0, and so we can’t integrate over the entirety of I'. Instead, we apply

Cauchy’s theorem to
1 z
G(Z) Tz ( + ﬁ)

over a path that lies entirely in the right half-plane. In order to do this, we introduce some
paths of integration. Let I';y and I's be the parts of I' in the right and left half-planes,
respectively. Let o be the oriented segment of the imaginary axis from ¢R to —iR. Finally,
when 7 is small let o, be the oriented segment of the line z = r between z; = r + vV R? — 12
and 2o = r —ivVR? —r2 on I'. We refer to this part of I'y as I'; .. By Cauchy’s theorem,

then, we have
1
0= / G(z)el? ( ) dz.
F17T+O-T R2

Combining the above expressions, and assuming that r» > 0 is small, we get that

2miGr(0) = Ii(R, 7, T) + I(R,r,T) — I3(R,r,T),

Similarly, one can find

|Gr(2) =

where

hUMﬂU:ﬁM@ﬂ@—G@k“(l m)“

L (1
Ly(R,7,T) = /F_FM GT(z)eT ( R2> dz
1
Ls(R,r,T) = / Gr(z)el” ( RQ> dz

There is an analogous formula for Gr,s(z). Since we seek to estimate Gr,5(z) — G(2), note
that

R2

6z_1 2
:/G@ez O+%>ﬁ@

As we assume that G(z+yi) converges uniformly as = approaches 0, we can let 7 go to 0 in this
expression. We can also do the same for the corresponding expression for Gr.5(0) — G7(0).

L(R,r, T +0) — I3(R,r,T) :/ G(z)(e(T+5)Z _ T ) (1 n i) dz
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Let I;(R,0,-) be the integrals with I'y, replaced with I'y and o, replaced with o. Putting
these expressions together, we get

21|Gr15(0) = Gr(0)] <

0z 2
Li(R,0,T+9)—(R,0,T)+ I,(R,0, T+ ) — I(R,0,T)| + /G(z)e— (1 + —) el?dz.
Fy z
From above, we can derive that

1
IL(RO0,T)| < [ 1Gr(z) — G(2)e"| |- + =
r, z R
M 2
S _e—TrpeTrp_‘2|dZ|
r, R
2M
= A
B 2 M
R
We also have
1 z
Tz
[I5(R,0,T)| < 5 |Gr(2)e St |dz|
B 2m M
R

Substituting the last few expressions into our desired difference and dividing by 27 we obtain

T+s 4AM 1 ed% 22 T
| /T | R 2m /a () z ( R2> ¢ dz

Substituting z = 1y for —R < y < R immediately gives the desired bound. It suffices then
to show that p(t) — 0 as ¢ — 0 under the assumptions listed.

6. p(t) >0 Ast—0

If the G(iy) are continuous or integrable, we use the Riemann-Lebesgue lemma, which
tells us that the integral vanishes at infinity. If G(z) is analytic on the segment [—iR,iR],
then integration by parts gives e/’ ¥dy = (Z.;flr)deiTy. In either case, we get

T+06 AM
/ o(t)dt

lim sup < —
T R

T—o0

Now suppose R is arbitrarily large. Then for every § > 0, as T'— oo we have

T+6
/ p(t)dt — 0

T
Finally, assume that p(t) is slowly decreasing. Then integrating both sides of p(t) — p(u) >
—n(t,T) from T to T + 0 and using the above shows that limsup;_, . 0p(T) < € and

limsupy_,., p(T) < €. Hence, limsup p(T) < 0. Using say fTT—a p(t)dt, we can obtain an
inequality in the other direction, finishing the proof. |
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