
THE WIENER-IKEHARA THEOREM AND THE PRIME NUMBER
THEOREM

JONATHAN SY

1. Introduction and preliminary notions

In this paper, we give a complex-analytic proof of the prime number theorem, following
Korevaar closely. We first show that ψ(n) ∼ n is equivalent to the prime number theorem,
then show the relation itself, and finally we prove a special case of the Wiener-Ikahara
theorem and derive the relation from it.

Definition 1.1 (Dirichlet Series). A Dirichlet series is a series of the form
∞∑
n=1

an
ns
,

where s is complex and an is a sequence of complex numbers.

Theorem 1.2 (Wiener-Ikahara). Suppose that the Dirichlet series
∞∑
n=1

an
nz
, with coefficients an ≥ 0,

converges on the half-plane {<z > 1}. The sum function f(z) is analytic in that open
half-plane, so suppose that there is a constant A such that the difference

g(z) = f(z)− A

z − 1

has an analytic or continuous extension to the closed half-plane {<z ≥ 1}. Also, suppose
that there is a constant C such that sn =

∑
k≤n ak ≤ Cn for all n. Then

sn ∼ An as n→∞.
Equivalently, sn/n→ A.

Definition 1.3. Let

Λ(n) =

{
log p if n = pk for some prime p and integer k ≥ 1

0 otherwise

Definition 1.4. Let

ψ(x) =
x∑

n≤x

Λ(n).

Theorem 1.5. For ψ(n) defined as above,

ψ(n) ∼ n.

Theorem 1.6. Theorem 1.5 is equivalent to the prime number theorem.
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2. Proving Theorem 1.6

We begin with a lemma.

Lemma 2.1. ψ(x) ∼ π(x) log x

Proof. First, we show that ψ(x) ≤ π(x) log x. Note that we have

ψ(x) =
∑
p≤x

log p

⌊
log x

log p

⌋
≤
∑
p≤x

log(x) = π(x) log x.

For the other direction, let ε > 0. Then we have

ψ(x) ≥
∑

x1−ε≤p≤x

log p ≥
∑

x1−ε≤p≤x

(1− ε) log x = (1− ε)(π(x) +O(x1−ε)) log x.

As this holds for arbitrarily small ε, it follows that ψ(x) ∼ π(x) log x. �

Now assume Theorem 1.5. We get x ∼ π(x) log x, or π(x) ∼ x
log x

, as desired.

Now assume PNT. We have ψ(x) ∼ π(x) log x, or ψ(x) ∼ x
log x

log x ∼ x, as we wanted. This
proves 1.6

3. Proving Theorem 1.5

We want to use Theorem 1.2 with A = 1, sn = ψ(n), and an = Λ(n). In order to get
there, we begin with the zeta function, which can be represented by its Euler product:

ζ(z) =
∏

p prime

(
1 +

1

pz
+

1

p2z
+ · · ·

)
=
∏

p prime

1

1− p−z

Taking the logarithmic derivative of this gives

ζ(s)′

ζ(s)
=

(
log

∏
p prime

(1− p−z)−1

)′

=

( ∑
p prime

log(1− p−z)−1

)′
= −

∑
p prime

(
log(1− p−z)

)′
= −

∑
p prime

p−z log p

1− p−z

=
∑
p prime

log p

1− pz

=
∑

p prime,m≥1

log p

pmz

=
∞∑
n=1

Λ(n)

nz
,



THE WIENER-IKEHARA THEOREM AND THE PRIME NUMBER THEOREM 3

where the last equality holds since Λ(n) = 0 whenever n is not a power of p. Hence, let

f1(z) =
ζ(s)′

ζ(s)
=
∞∑
n=1

Λ(n)

nz

In order to use 1.2, we need to be able to extend f1(z) to a function g1(z) that is also analytic
on the line {<(z) = 1}. We will assume the following lemma:

Lemma 3.1. ζ(z) 6= 0 on the line {<(z) = 1}, except for z = 1.

It follows that −ζ(z)
′

ζ(z)
is analytic on {<(s) = 1} except for at s = 1. For s = 1 we use the

following lemma:

Lemma 3.2. As s→ 1, ζ(s) ∼ 1
s−1

.

Proof. We apply the following slightly modified form of Euler’s Summation Formula:
Let φ(x) be any function that is differentiable with a continuous derivative on the closed
interval [a, b]. Then we have that

∑
a<n≤b φ(n) is equal to the following:∫ b

a

φ(x)dx+

∫ b

a

(
x− bxc − 1

2

)
φ′(x)dx+

(
a− bac − 1

2

)
φ(a)−

(
b− bbc − 1

2

)
φ(b).

The proof of this result is left to the reader.
Applying this to the function φ(x) = x−s yields

b∑
n=a+1

=
b1−s − a1−s

1− s
− s

∫ b

a

x− bxc − 1
2

xs+1
dx+

1

2

(
1

bs
− 1

as

)
.

Letting a = 1, b→∞, adding 1 to both sides, and assuming that R(s) > 1, yields ζ(s), so

ζ(s) =
1

s− 1
+ s

∫ ∞
1

bxc − x+ 1
2

xs+1
dx+

1

2
.

The result follows. �

Hence, the function g1(z) = f1(z)− 1
z−1

is analytic on <(s) ≥ 1.
We now need a bound C such that sn = ψ(n) ≤ Cn for all n. We obtain this using
Chebyshev’s inequality:

Lemma 3.3. There exists a constant C such that π(n) ≤ C n
logn

Proof. Note that nπ(2n)−π(n) ≤
∏

n<p≤2n ≤
(

2n
n

)
≤ 22n, as every prime p with n < p ≤ 2n

appears once in 2n! but never in n!. Taking logn on both sides, we get π(2n) ≤ π(n) +

2 log 2 n
logn

. Using induction, it is easy to show that π(2k) ≤ 3 · 2k
k

: by the previous inequality,

we have that when k ≥ 5,

π(2k+1) ≤ π(2k) +
2k+1

k
≤ 3 · 2k

k
+ 2 · 2k

k
= 5 · 2k

k
≤ 3 · 2k+1

k + 1
.

But x
log x

is a monotonically increasing function, so 4 ≤ 2k < x ≤ 2k+1 implies

π(x) ≤ π(2k+1) ≤ 6 · 2k

k + 1
≤ 6 · 2k

k − 1
= 6 log 2

2k

log 2k
≤ 6 log

x

log x

It’s easy to check that π(x) ≤ 6 log 2 x
log x

when x ≤ 4, so the proof is complete. �



4 JONATHAN SY

Using Lemma 3.3, we have

ψ(n) =
∑
p≤n

(
log n

log p

)
log p = log n

∑
p≤n

1 = π(n) log(n) ≤ Cn.

Thus, with A = 1, sn = ψ(n), and an = Λ(n), the assumptions of Theorem 1.2 hold. It
follows then that ψ(n) ∼ n, as desired.

4. Proof of Theorem 1.2

Assume the conditions of Theorem 1.2 hold. Let

s(v) =
∑
k≤v

ak,

which means that s(v) = sn when n ≤ v < n + 1 and s(v) = 0 when v < 1. Now, partial
summing 1.2 gives

f(z) =
∞∑
n=1

sn − sn−1

nz
.

But note that each sm will be multiplied first by 1
mz

when n = m, and then by − 1
(m+1)z+1

when n = m+ 1, and so we can rewrite the sum as

∞∑
n=1

sn

(
1

nz
− 1

(n+ 1)z

)
.

By inserting a factor of z, we can rewrite the summand as an integral, and then combine the
integrals to obtain f(z) as an integral in terms of z:

f(z) =
∞∑
n=1

snz

∫ n+1

n

v−z−1dv

= z

∫ ∞
1

s(v)v−z−1dv

Using this, we can rewrite g(z)− A as:

g(z)− A = f(z)− A

z − 1
− A

= f(z)− Az

z − 1

= z

(∫ ∞
1

s(v)v−z−1dv −
∫ ∞

1

Av−zdv

)
= z

∫ ∞
1

(
s(v)

v
− A

)
v−zdv

Now substitute

v = et,
s(v)

v
− A = e−ts(et) = ρ(t),
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and let ρ(t) = 0 when t < 0. But for t > u ≥ 0, we have s(et) ≥ s(eu), and so

ρ(t)− ρ(u) = e−ts(et)− e−us(eu)
≥ (e−t − e−u)s(eu)
= (e−(t−u) − 1)e−us(eu)

= −(1− e−(t−u))(ρ(u) + A)

≥ −(t− u)(ρ(u) + A).

As a function that satisfies f(t) − f(u) ≥ −µ(t, u) when µ(t, u) → 0 as u → ∞ and
0 < t− u→ 0 is called slowly decreasing, ρ is slowly decreasing. Now consider the following
Laplace transform of ρ:

Lρ(z) =

∫ ∞
0

ρ(t)e−ztdt

=

∫ ∞
0

(
s(v)

v
− A

)
v−z−1dv

=
g(z + 1)− A

z + 1
.

Hence, we have to prove that as t→∞, ρ(t)→ 0.
The following theorem will suffice then:

Theorem 4.1. Let ρ(t) = 0 for t < 0 and |ρ(t)| ≥ M < ∞ for t ≥ 0. Then the Laplace
transform

G(z) = Lρ(z) =

∫ ∞
0

ρ(t)e−ztdt, z = x+ yi

defines an analytic function for x > 0. Suppose that for −R ≤ y ≤ R, the function g(x+ yi)
converges uniformly to a limit function as x approaches 0 from the positive side. Then for
every positive T and δ,∣∣∣∣∫ T+δ

T

ρ(t)dt

∣∣∣∣ ≤ 4M

R
+

1

2π

∣∣∣∣∫ R

−R
G(iy)

eiδy − 1

y

(
1− y2

R2

)
eiTydy.

∣∣∣∣
If R can be arbitrarily large, and ρ is slowly decreasing, then

ρ(T )→ 0 as T →∞.

5. Proof of 4.1

Proof. Let GT (z) =
∫ T

0
ρ(t)e−ztdt, where z = x+ yi. Our goal is to estimate the difference

GT+δ(0)−GT (0) =

∫ T+δ

T

ρ(t)dt.

Let Γ be the positively oriented circle C(0, R) = {|z| = R}. Using Cauchy’s formula, we
have

2πiGT (0) =

∫
Γ

GT (z)
1

z
dz.

When T is large, and z is in the right half of the plane (<(z) > 0, we have

|GT (z)−G(z)| =
∣∣∣∣∫ ∞
T

ρ(t)e−ztdt

∣∣∣∣ ≤M

∫ ∞
T

e−xtdt =
M

x
e−Tx
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Similarly, one can find

|GT (z) =

∣∣∣∣∫ T

0

ρ(t)e−ztdt

∣∣∣∣ ≤ ∫ T

0

e−xtdt <
M

|x|
e−Tx.

If we replace the 1
z

in the Cauchy formula with 1
z

+ z
R2 and insert a factor of eTz into the

integrand, we get

2πiGT (0) =

∫
Γ

GT (z)eTz
(

1

z
+

z

R2

)
dz

by the residue theorem.
Now we want to do something similar but with G(z). The problem is that G(z) need not be
analytic when <(z) < 0, and so we can’t integrate over the entirety of Γ. Instead, we apply
Cauchy’s theorem to

G(z)eTz
(

1

z
+

z

R2

)
over a path that lies entirely in the right half-plane. In order to do this, we introduce some
paths of integration. Let Γ1 and Γ2 be the parts of Γ in the right and left half-planes,
respectively. Let σ be the oriented segment of the imaginary axis from iR to −iR. Finally,
when r is small let σr be the oriented segment of the line x = r between z1 = r +

√
R2 − r2

and z2 = r − i
√
R2 − r2 on Γ. We refer to this part of Γ1 as Γ1,r. By Cauchy’s theorem,

then, we have

0 =

∫
Γ1,r+σr

G(z)eTz
(

1

z
+

z

R2

)
dz.

Combining the above expressions, and assuming that r > 0 is small, we get that

2πiGT (0) = I1(R, r, T ) + I2(R, r, T )− I3(R, r, T ),

where

I1(R, r, T ) =

∫
Γ1,r

(GT (z)−G(z))eTz
(

1

z
+

z

R2

)
dz

L2(R, r, T ) =

∫
Γ−Γ1,r

GT (z)eTz
(

1

z
+

z

R2

)
dz

L3(R, r, T ) =

∫
σr

GT (z)eTz
(

1

z
+

z

R2

)
dz

There is an analogous formula for GT+δ(z). Since we seek to estimate GT+δ(z)−G(z), note
that

I3(R, r, T + δ)− I3(R, r, T ) =

∫
σr

G(z)(e(T+δ)z − eTz)
(

1

z
+

z

R2

)
dz

=

∫
σr

G(z)
eδz − 1

z

(
1 +

z2

R2

)
eTzdz

As we assume that G(x+yi) converges uniformly as x approaches 0, we can let r go to 0 in this
expression. We can also do the same for the corresponding expression for GT+δ(0)−GT (0).
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Let Ij(R, 0, ·) be the integrals with Γ1,r replaced with Γ1 and σr replaced with σ. Putting
these expressions together, we get

2π|GT+δ(0)−GT (0)| ≤

I1(R, 0, T + δ)− I1(R, 0, T ) + I2(R, 0, T + δ)− I2(R, 0, T )|+
∫
δ

G(z)
eδz

z

(
1 +

z2

R2

)
eTzdz.

From above, we can derive that

|I1(R, 0, T )| ≤
∫

Γ1

|GT (z)−G(z)|eTz|
∣∣∣∣1z +

z

R2

∣∣∣∣
≤
∫

Γ1

M

x
e−TxeTx

2x

R2
|dz|

=
2M

R2
πR

=
2πM

R
We also have

|I2(R, 0, T )| ≤
∫

Γ2

|GT (z)eTz
∣∣∣∣1z +

z

R2

∣∣∣∣ |dz|
=

2πM

R
Substituting the last few expressions into our desired difference and dividing by 2π we obtain

|
∫ T+δ

T

| ≤ 4M

R
+

1

2π

∫
σ

G(z)
eδz

z

(
1 +

z2

R2

)
eTzdz.

Substituting z = iy for −R ≤ y ≤ R immediately gives the desired bound. It suffices then
to show that ρ(t)→ 0 as t→ 0 under the assumptions listed.

6. ρ(t)→ 0 as t→ 0

If the G(iy) are continuous or integrable, we use the Riemann-Lebesgue lemma, which
tells us that the integral vanishes at infinity. If G(z) is analytic on the segment [−iR, iR],
then integration by parts gives eiTydy = ( 1

iT
)deiTy. In either case, we get

lim sup
T→∞

∣∣∣∣∫ T+δ

T

ρ(t)dt

∣∣∣∣ ≤ 4M

R

Now suppose R is arbitrarily large. Then for every δ > 0, as T →∞ we have∫ T+δ

T

ρ(t)dt→ 0

Finally, assume that ρ(t) is slowly decreasing. Then integrating both sides of ρ(t)− ρ(u) ≥
−η(t, T ) from T to T + δ and using the above shows that lim supT→∞ δρ(T ) ≤ εδ and

lim supT→∞ ρ(T ) ≤ ε. Hence, lim sup ρ(T ) ≤ 0. Using say
∫ T
T−δ ρ(t)dt, we can obtain an

inequality in the other direction, finishing the proof. �
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