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Abstract. In this paper, we explore variations of the polylogarithm function as well as their
properties. In addition, we examine the multiple zeta function and its similarities with the
multiple polylogarithm.

We begin with an introduction to polylogarithms, including their definitions and basic
identities. Then, we look at the dilogarithm in particular, proving some of its functional
equations. Finally, we introduce the multivariable versions of both the polylogarithm and
Riemann zeta function and observe the relations between the two.

1. Introduction

The polylogarithm function is a special function Lik(x) of order k and argument x. For
some values of k, it can be expressed in terms of elementary functions. The function comes
up often in fields such as quantum statistics.

Definition 1.1. The polylogarithm function is a power series in x and a Dirichlet series in k
defined for |x| < 1 (but can be analytically extended to a larger domain) by

Lik(x) =
∞∑
n=1

xn

nk
.

There are a plethora of functional equations with regard to the general polylogarithm as
well as specific forms of it. One important one is the square relationship.

Proposition 1.2 (Square Relationship). We have the following duplication formula:

Lik(−x) + Lik(x) = 21−k Lik(x
2).

Proof. This can be easily shown by adding the series expanisions of the left hand side and
eliminating the zero terms.

Lik(x) = x + x2

2k
+ x3

3k
+ x4

4k
+ x5

5k
+ x6

6k
+ x7

7k
+ · · ·

Lik(−x) = −x + x2

2k
− x3

3k
+ x4

4k
− x5

5k
+ x6

6k
− x7

7k
+ · · ·

Lik(x) + Lik(−x) = x2

2k−1 + x4

2k−1·2k + x6

2k−1·3k + · · ·

Note that the bottom line is 21−k Lik(x
2), so, as desired, we have

Lik(−x) + Lik(x) = 21−k Lik(x
2).
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For some values of k, Lik(x) can be expressed neatly in closed form. These values include

Li1(x) = − log(1− x),

Li0(x) =
x

1− x
,

and Li−1(x) =
z

(1− z)2
.

Furthermore, the closed form expressions for all negative integer values of k can be easily
found using the recurrence formula, given below.

Proposition 1.3 (Recurrence Relation). The recurrence formula shows the relationship be-
tween lower- and higher-order polylogarithms, and can be stated in either of the two following
forms:

Lik+1(x) =

∫ x

0

Lik(t)

t
dt, xLi′k(x) = Lik−1(x)

Proof. The formula can be shown by differentiating the series term-by-term.

Lik(x) =
∞∑
n=1

xn

nk

Li′k(x) =
∞∑
n=1

xn−1

nk−1

xLi′k(x) =
∞∑
n=1

xn

nk−1

= Lik−1(x).

The other form of the formula can be obtained by dividing by x and integrating on the above
result. �

As was previously mentioned for k, certain values of x result in Lik(x) resembling other
common functions. Here are two examples:

Lik(1) =
∞∑
n=1

1

nk
= ζ(k)

and Lik(−1) =
∞∑
n=1

(−1)n

nk
= η(k),

where ζ(k) is the Riemann zeta function and η(k) is the Dirichlet eta function, also known as
the alternating zeta function.

2. The Dilogarithm

Now, let us take a look at one of the specific cases of the polylogarithm function. While
there are many of these (in fact, infinitely many), the dilogarithm has several interesting
properties, from special values to functional equations. Let’s look at some of these.
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Definition 2.1. The dilogarithm function, also known as Spence’s function (named after
the early ninteenth century Scottish mathematician William Spence), is a special case of the
polylogarithm for k = 2, given by

Li2(x) =
∞∑
n=1

xn

n2
.

Proposition 2.2. One of the aforementioned functional equations is a reflection formula,
given by

Li2(x) + Li2(1− x) =
π2

6
− log(x) log(1− x).

Proof. We begin with an integral representation of the dilogarithm function, given by

Li2(x) = −
∫

log(1− x)

x
dx.

By substituting 1− x in place of x, we get

Li2(1− x) =

∫
log(x)

1− x
dx.

Then, adding the two equations above and integrating gives us

Li2(x) + Li2(1− x) = −
∫ (

log(1− x)

x
− log(x)

1− x

)
dx

= − log(x) log(1− x) + C.

Now, we solve for the constant of integration by plugging in x = 0.

C = Li2(1) =
1

12
+

1

22
+

1

32
+ · · · = π2

6

Thus,

Li2(x) + Li2(1− x) =
π2

6
− log(x) log(1− x).

�

Proposition 2.3 (Abel’s Duplication Formula). Another important relation is the duplication
formula, which obviously follows from Proposition 1.2 and states

Li2(x) + Li2(−x) = 1
2

Li2(x
2).

Proposition 2.4. We have the following five-term functional equation, which can be expressed
in many other forms as well:

Li2

(
x

1− x
· y

1− y

)
= Li2

(
y

1− x

)
+ Li2

(
x

1− y

)
− Li2(y)− Li2(x)− log(1− y) log(1− x).

Proof. If we take the integral representation of the dilogarithm

Li2(x) = −
∫

log(1− x)

x
dx.

and replace x with a
1−a ·

y
1−y , treating a as a constant, we obtain the equation

Li2

(
a

1− a
· y

1− y

)
= −

∫ (
1

y
+

1

1− y

)
log

1− a− y
(1− a)(1− y)

dy.
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Expanding the fractions and logarithm, we get

Li2

(
a

1− a
· y

1− y

)
= −

∫
1

y
log

(
1− y

1− a

)
dy +

∫
log(1− y)

y
dy

−
∫

1

1− y
log

(
1− a

1− y

)
dy +

∫
log(1− a)

1− y
dy.

All of the integrals on the right hand side of the above equation can be written in terms of
the logarithm and dilogarithm by applying the following three relations:∫

1

y
log

(
1− y

1− a

)
dy = −Li2

(
y

1− a

)
,∫

log(1− y)

y
dy = −Li2(y),

and

∫
1

1− y
log

(
1− a

1− y

)
dy = −Li2

(
a

1− y

)
.

After making the appropriate substitutions and adding the constant of integration, the result-
ing equation is

Li2

(
a

1− a
· y

1− y

)
= Li2

(
y

1− a

)
+ Li2

(
a

1− y

)
− Li2(y)− log(1− a) log(1− y) + C.

By plugging in y = 0, we see that C = −Li2(a). Then, replacing a with x, we obtain the
desired result:

Li2

(
x

1− x
· y

1− y

)
= Li2

(
y

1− x

)
+ Li2

(
x

1− y

)
− Li2(y)− Li2(x)− log(1− y) log(1− x).

�

A few other useful two-term functional equations arise from substitutions into the above
five-term equation, including the following:

Proposition 2.5.

Li2(1− z) + Li2

(
1− 1

z

)
= −1

2
log2 z

Proof.

Li2

(
x

1− x
· y

1− y

)
= Li2

(
y

1− x

)
+ Li2

(
x

1− y

)
− Li2(y)− Li2(x)− log(1− y) log(1− x).

Now, we make the substitution x = y = 1− z and we get

Li2

((
1− z
z

)2
)

= 2 Li2

(
1− z
z

)
− 2 Li2(1− z)− log2 z.

We can apply the square relationship on the left hand side of the above equation, resulting in
the following:

2 Li2

(
1− z
z

)
+ 2 Li2

(
z − 1

z

)
= 2 Li2

(
1− z
z

)
− 2 Li2(1− z)− log2 z.
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Moving all the dilogarithm terms to the left hand side and simplifying, we obtain the desired
result:

Li2(1− z) + Li2

(
1− 1

z

)
= −1

2
log2 z.

�

Proposition 2.6 (Inversion Formula). Finally, we have the inversion formula, which relates
the dilogarithm of an argument and the dilogarithm of its reciprocal.

Li2(z) + Li2(1/z) = −π2

6
− 1

2
log2 z.

Since we have relations for dilogarithms of the quantities

x,
1

x
, 1− x, 1

1− x
,
x− 1

x
, and

x

x− 1
,

we are able to reduce any real argument down to |x| < 1
2
. This allows us to compute particular

values of the dilogarithm efficiently.
Notably, there are only eleven known values for x for which both x and Li2(x) can be

expressed in closed form. Most of these can be found using the identities listed above. These
are

Li2(0) = 0,

Li2(1) =
π2

6
,

Li2(−1) = −π
2

12
,

Li2

(
1

2

)
=
π2

12
− 1

2
log2(2),

Li2(2) =
π2

4
− πi log 2,

Li2(φ
−2) =

π2

15
− log2(φ),

Li2(φ
−1) =

π2

10
− log2(φ),

Li2(−φ−1) = −π
2

15
+ log2(φ),

Li2(φ) =
11π2

15
+

1

2
log2(−φ−1),

Li2(φ
2) = −11π2

15
− log2(−φ),

and Li2(−φ) = −π
2

10
+ log2(φ),

where φ is the golden ratio φ = 1+
√
5

2
.

3. Multiple Polylogarithms

There is also a multiple polylogarithm function, which involves multiple orders as well as
multiple arguments.
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Definition 3.1. The multiple polylogarithm function of depth k is defined as

Lis1,...,sk(x1, . . . , xk) =
∑

n1>···>nk≥1

xn1
1 · · ·x

nk
k

ns11 · · ·n
sk
k

.

Sometimes, the multiple polylogarithm is used on only one variable. In such situations, it
is defined as

Lis1,...,sk(x) =
∑

n1>···>nk≥1

xn1

ns11 · · ·n
sk
k

.

The multiple polylogarithm in one variable has several properties that are similar to the
classical single polylogarithm. These include the following recurrence formulas:

x
d

dx
Lis1,...,sk(x) = Lis1−1,...,sk(x)

and (1− x)
d

dx
Li1,s2,...,sk(x) = Lis2,...,sk(x).

Along with the initial condition

Lis1,...,sk(0) = 0,

the above differential equations uniquely determine the multiple polylogarithm for all valid
s1, . . . , sk.

4. Multiple Zeta Values

Definition 4.1. The multiple zeta function is a generalization of the Riemann zeta function
to multiple variables and is defined as

ζ(s1, . . . , sk) =
∑

n1>···>nk≥1

1

ns11 · · ·n
sk
k

.

We shall begin with some relevant vocabulary. When s1, s2, . . . are positive integers with
s1 > 1, the sums are referred to as multiple zeta values (MZVs). The quantity s1+s2+ · · ·+sk
is the weight of an MZV and k is its length.

Note that, similar to the single zeta function and single polylogarithm, the following is true:

Lis1,...,sk(1) = ζ(s1, . . . , sk).

Proposition 4.2. One equation that can be used to translate some instances of multiple zeta
values into single zeta values is

2ζ(s, s) = ζ(s)2 − ζ(2s).



POLYLOGARITHMS AND MULTIPLE ZETA VALUES 7

Proof. The proof is shown by eliminating the condition m<n, splitting the series, and ex-
pressing the terms with forms of the single zeta function.

ζ(s, s) =
∑

0<m<n

1

msns

=
1

2

∑
m,n>0
m 6=n

1

msns

=
1

2

( ∑
m,n>0

1

msns
−
∑
n>0

1

n2s

)
= 1

2
(ζ(s)2 − ζ(2s))

�
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