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1. Motivation for Sieves and Sieve Theory

The purpose of sieving and sieve theory is to find approximations and bounds on prime
numbers or structures bearing a resemblance to prime numbers. Essentially, given a small
set of primes, we want an approximation of how many numbers in a much larger set divide
none of those primes. Since all primes in the larger set must satisfy this criterion, this gives
us a bound on the number of primes up to x and how fast it grows. Similarly, these methods
can be expanded to non-integer sets — if each prime corresponds to a subset, then we try
to search for all elements not contained in any such subset.

The most basic sieve is the Sieve of Eratosthenes, named after the Greek mathematician
who invented it. The sieve is constructed by taking the first n positive integers and crossing
out the number 1. Then the next unmarked number, 2, is a prime, and we cross out all
multiples of 2. The next unmarked is 3, which we mark as prime and cross out its multiples.
Next is 5, then 7, then 11, and so on. While the sieve is basic, certain ways of rewriting the
method allow for very useful conclusions. A modification of one such method is what creates
the Selberg sieve.

2. The Selberg Sieve

Defining Φ(x, z) as the number of integers below x dividing no primes below z, we can use
inclusion-exclusion to derive the identity

Φ(x, z) =
∑
d|Pz

µ(d)
∑
d|n≤x

1 =
∑
n≤x

∑
d|n,Pz

µ(d)

where Pz is defined as the product of all primes up to z.
This identity is Legendre’s representation of the Sieve of Eratosthenes, coming from the

fact that the Möbius function can be summed to yield an inclusion-exclusion counting by
prime factors. Setting z = k and maipulating the result by relating π(x) and Φ(x) gives the
bound π(x) = O( x

log log x
). Using further manipulations, we derive a slightly better bound:

π(x) = O(x log log x
log x

).

The goal of Selberg’s method, then, is to further reduce this bound by replacing the
Möbius function in the Legendre identity with a series of weights set specifically to minimize
the bound. Specifically, since the sum of the Möbius function applied to all divisors of k is 1
if k = 1 and 0 otherwise, we can set a series of weights λn — as long as λ1 = 1, we can say
that ∑

d|k

µ(d) ≤

(∑
d|k

λd

)2

.
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This is the key observation to the creation of this sieve. We can substitute this into
Legendre’s identity to get

Φ(x, z) ≤
∑
n≤x

( ∑
d|(n,Pz)

λd

)2

.

Splitting up the square sum and rearranging the summation order yields

Φ(x, z) ≤
∑

d1,d2|Pz

λd1λd2
∑

[d1,d2]|n≤x

1

where [m,n] is the least common multiple of m and n.
The second summation in this form is an alternative formulation of the function b x

[d1,d2]
c.

Since a floor is never more than one away from the initial value, this can also be rewritten
as x

[d1,d2]
+ O(1). Replacing this in the above expression and moving it to the ”outside” of

the sum gives

Φ(x, z) ≤ x
∑

d1,d2|Pz

λd2λd1
[d1, d2]

+O

( ∑
d1,d2|Pz

|λd1||λd2|

)
.

What we now desire is to set values of λn to minimize both the concrete term and the
error term here.

The first choice we make is to replace the summations of divisors of Pz into something
more convenient. To so this, we set λd = 0 for d > z, leaving us with the nicer

Φ(x, z) ≤ x
∑

d1,d2≤z

λd2λd1
[d1, d2]

+O

( ∑
d1,d2≤z

|λd1||λd2|

)
.

Now, isolating the main term, we can multiply out (d1, d2) to get∑
d1,d2≤z

λd2λd1
d1d2

(d1, d2).

Next, we use the fact that the sum of the Euler function over the divisors of d is equal to
d to get ∑

d1,d2≤z

λd2λd1
d1d2

∑
k|(d1,d2)

φ(k).

We can swap the summation order of this expression and combine the dual summation
into a square to obtain ∑

k≤z

φ(k)

( ∑
k|d≤z

λd
d

)2

.

This form can be more easily minimized. Evaluating from the conditions set for λn even-
tually yields a minimum value of 1

V (z)
, where

V (z) =
∑
d≤z

µ2(d)

φ(d)
.
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This occurs when we set

λk = k
∑

kmidd≤z

µ(d/k)µ(d)

φ(d)V (z)
.

Thus, we have minimized our non-O term to x
V (z)

.

Next, we turn to the error term. By examining closely the values of λn (specifically
expanding out V (z)λn), we find that |λn| ≤ 1 for all n. Thus∑

d1,d2≤z

|λd1 ||λd2| ≤ z2,

giving us a final bound of

Theorem 2.1.

Φ(x, z) ≤ x

V (z)
+O(z2).

This can be expanded to the general sieve case. In the general case, we have have a set
A of elements and a set P of primes and for each prime p ∈ P we have a set Ap ⊂ A. For
all other positive integers d we define Ad as the intersection of the Ap’s for all primes that
divide it, and we set A1 = 1. We seek to find bounds on S(A,P, z),the number of elements
of A which are not contained in any Ap for some p | P (z).

For the general Selberg sieve, we take some multiplicative function f and some positive
real number X such that the number of elements of Ad can be written as X

f(d)
+ Rd where

Rd is some real number. The Selberg sieve bound states that:

Theorem 2.2. (Selberg sieve)

S(A,P , z) ≤ |A|
V (z)

+O

( ∑
d1,d2≤z;d1,d2|P (z)

|R[d1,d2]|

)
,

where

V (z) =
∑

d≤z;d|P (z)

µ2(d)

f1(d)

and f1 is the Möbius inversion
∑

d|n µ(d)f(n
d
).

The proof of this bound is slightly more complicated, but follows the same general steps
of the above proof of the sieve bound on Φ(x, z).

The error term here does not simplify quite as well due to the condition of all the terms
of its summation being smaller than 1 is not necessarily met.

3. Counting Primes with the Selberg Sieve

We can now use the Selberg sieve bound for Φ(x, z) to get a better bound on π(x). First,
we assume z ≤ x to get π(x) ≤ Φ(x, z) + z. Examining the value of V (z), we get the lower
bound V (z) >> log z. From this (and since z = O(z2)) we achieve the upper bound

π(x) <
x

log z
+O(z2).

If we set z =
√

x
log x

, we get:
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π(x) <
x

1/2(log x− log log x)
+O

(
x

log x

)
π(x) < O

(
x

log x

)
+O

(
x

log x

)
,

which yields

Theorem 3.1.

π(x) = O

(
x

log x

)
This gives us a stronger bound than can be derived from either the Brun sieve or the Sieve

of Eratosthenes.

4. Other Applications

One of the major applications of the Selberg sieve is the proof of the Brun-Titchmarsh
theorem. The theorem centers around the question of trying to find the number of primes
in an arithmetic progression. Specifically, we want to find a bound on π(x; q, a), defined as
the number of primes p ≤ x congruent to a mod k. The Brun-Titchmarsh theorem, proved
using the Selberg sieve, gives a bound as follows:

Theorem 4.1. (Brun-Titchmarsh) Given positive integers a and k coprime, and x defined
such that there exists some θ < 1 for which k ≤ xθ, for any ε > 0, there exists some x0 > 0
such that

π(x; k, a) ≤ (2 + ε)x

φ(k) log(2x/k)
for all x > x0.

This gives us a bound of 2x
φ(k) log(2x/k)

as x→∞.

Brun-Titchmarsh can in turn be used to prove a number of other results, such as setting
the bound of the number of n ≤ x such that n and φ(n) are relatively prime is approximately

e−yx
log log log x

as x→∞ (due to Erdös).

In summary, the Selberg sieve — a modification of Legendre’s rewritten Sieve of Er-
atosthenes using modifiable weights instead of the Möbius function that allow for further
optimization — can be used to prove bounds on the size of numerous sets of primes or prime-
like structures. While some of these bounds can be proven without sieve theory, others are
based uniquely on the utilization of this method.
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