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1 Apery’s Theorem

This theorem states that ζ3 is irrational.

2 Proof of Apery’s Theorem

We first prove that ζ2 equals (π)2

6 .

ζ(s) =
∏

p=prime

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ · · ·

)
.

The stuff inside the parentheses is a geometric series, with sum
(

1− 1
ps

)−1
. This gives the desired result.

Using this, we can get new identities about Dirichlet series not coming from Dirichlet convolutions. Let’s
start with the Riemann zeta function and then take the logarithmic derivative with respect to s. That means
that we take a logarithm and then take the derivative d

ds log ζ(s). When we apply this to the Riemann zeta
function, we get

ζ ′(s) =
d

ds
log ζ(s)

=
d

ds
log

 ∏
p=prime

(
1− 1

ps
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= − d

ds
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p=prime
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1− 1

ps

)

= −
∑

p=prime

(
log(p)

ps

)(
1− 1

ps

)−1

= −
∑

p=prime

log(p)

∞∑
m=1

1

pms

= −
∞∑
n=1

Λ(n)

ns
.

We have

ζ(2s) =

 ∏
p= prime

(
1− 1

ps

)−1 ∏
p= prime

(
1− 1

p2s

)
=

∏
p=prime

1− p−2s

1− p−s

=
∏

p=prime

(
1 +

1

ps

)
.
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In other words, this is the Dirichlet Series for the multiplicative arithmetic function that takes on the value 1
at all primes and 0 at all higher prime powers,but that’s just |µ|. This is an integral involving a floor function,
we should break it up into a sum over all possible values of the floor so it will be easier to compute. Thus we
have ∫ ∞

1

bxc
xs+1

dx =
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n=1

∫ n+1

n

bxc
xs+1

dx

=

∞∑
n=1
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n

n
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=

∞∑
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n
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n
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s
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n
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)
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s
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+

2

3s
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3
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+

4

5s
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4s
+ · · ·

]
= −1

s
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]
=
ζ(s)

s
.

The result follows upon multiplication by s. We can let s = 3 since we are trying to figure out ζ3. Thus we
have that ζ(3) = 3 times the integral. This will lead to us showing that the integral is irrational.

3 Apery’s Original Proof

Apery’s original proof was based on the well known irrationality criterion from Peter Gustav Lejeune
Dirichlet, which states that a number ξ is irrational if there are infinitely many co-prime integers p and q such
that∣∣∣ξ − p

q

∣∣∣ < c
q1+δ

for some fixed c,δ > 0.

The starting point for Apery’s proof was the series representation of ζ(3) as

ζ(3) =
5

2

∞∑
n=1

(−1)n−1

n3 ∗ 2nCn
.

Roughly speaking, Apery then defined a sequence cn,k which converges to ζ3 about as fast as the above
series, specifically

cn,k =

n∑
m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3 ∗ nCm ∗ n+mCm
.

He then defined two more sequences an and bn that, roughly, have the quotient cn,k. These sequences were

an =

n∑
k=0

cn,k(nCk)
2 ∗ ((n+ k)Ck)

2

bn =

n∑
k=0

(nCk)
2 ∗ ((n+ k)Ck)

2

The sequence an
bn

converges to ζ3 fast enough to apply the criterion, but unfortunately an is not an integer
after n=2. Nevertheless, Apery then showed that even after multiplying an and bn by a suitable integer to fix
the problem. The convergence is still fast enough to guarantee irrationality.
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4 Proof by Fritz Beuker

An alternative, shorter proof was proposed by Beuker. He interpreted Apery’s approximations by integrals.
From the definition of Legendre polynomials Ln(x) as an nth derivative and the fact that∫ 1

0

∫ 1

0

∫ 1

0

Ln(x)Ln(y)

1− xz + xyz
dxdydz = (An +Bnζ3)l3n

for integers An and Bn, Beukers derived by integration by parts that the integral above is nonzero and
asymptotically small. The irrationality of ζ3 follows by the same final arguments as in Apery’s proof.

5 Another proof

Suppose the contradiction to Apery’s theorem, that ζ3 = p/q, where p and q are positive integers. Then,
using a trivial bound Dn < 3n, we deduce that, for each n = 0, 1, 2, . . ., the integer qD3

nFn = D3
nunp−D3

nvnq
satisfies the estimate 0 < qD3

nFn < 20q(n+1)433n(
√

2−1)4n that is not possible since 33(
√

2−1)4 = 0.7948... <
1 and the right-hand side of the equation above is less than 1 for a sufficiently large integer n. This contradiction
completes the proof of the theorem.

Mathematicians later on proved that zeta of all odd numbers are irrational. Zeta of all negative even
numbers are equal to 0, while sets of all negative odd number are rational.

6 Zeta of negative numbers

ζ(−n) = (−1)n Bn+1

n+1
Zeros occur at the negative even integers:
ζ(−2n) = 0
ζ(−1) = − 1

12
ζ(−3) = 1

120
ζ(−5) = − 1

252
ζ(−7) = 1

240
ζ(−9) = − 1

132
ζ(−11) = 691

32760
ζ(−13) = − 1

12
These are the first few negative odd numbers, we can see that all of them are rational unlike their positive

counterparts and negative even numbers equal zero unlike their positive counterparts.

3


	Apery's Theorem
	Proof of Apery’s Theorem
	Apery's Original Proof
	Proof by Fritz Beuker
	Another proof
	Zeta of negative numbers

