
CARMICHAEL NUMBERS

ALEX THOLEN

Definition 1. A Carmichael number n is a non-prime where for all a, we get that an ≡ a
mod n.

Non-prime is necessary, as this condition is satisfied by all primes, due to Fermat’s Little
Theorem. The existence of Carmichael numbers are a counterexample to the converse of
Fermat’s Little Theorem - as the theorem states that primes satisfy an ≡ a mod n for all
a, and Carmichael numbers aren’t prime. The first Carmichael numbers were found in 1910,
but not until 1992, when the source I used published, was it known that there was an infinite
amount of them.

Definition 2. Euler’s totient function denoted by φ(n) is the number of numbers relatively
prime to n up to n.

For example, φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(10632) = 3536 . . .

Definition 3. Let C(x) be the number of Carmichael numbers up to x.

Other people have proven that C(x) ≤ x1−(1+o(1)) log log log x/ log log x, however that isn’t rele-
vant to proving infinitude.

Definition 4. Let π(x) be the number of primes p ≤ x, and let π(x, y) be the number of
these for which p − 1 is free of prime factors exceeding y. Let π(x; d, a) be the number of
primes up to X that are a mod d.

The prime number theorem says that that is roughly π(x)
φ(d)

.

Definition 5. Let E be the set of numbers E in the range 0 < E < 1 for which there are
numbers x1(E), y1(E) > 0 such that π(x, x1−E) ≥ y1(E)π(x) for all x ≥ x1(E).

It has been proven in the past that any positive number less than 1− (2
√
e)−1 ≈ 0.7 is in

E , but to prove infinitude, it suffices to show that some positive number is in E . We will not
be proving it, however. Erdős conjectured that all numbers less than 1 are in E .

Definition 6. Let B denote the set of numbers B in the range 0 < B < 1 for which there is
a number x2(B) and a positive integer DB, such that for each x ≥ x2, there is a set DB(x)
of at most DB integers, each exceeding log(x), with

π(y; d, a) ≥ π(y)

2φ(d)

whenever (a, d) = 1, 1 ≤ d ≤ min{xB, y
x1−B
}and d is not divisible by any members of DB.

Theorem 7. Korselt’s criterion: n is a Carmichael number if and only if n is squarefree
and p− 1 divides n− 1 for all primes p dividing n.
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Proof. Squarefree is obvious: If it isn’t squarefree, then a number whose square is a factor
of n can not return to itself mod n. To prove the fact that p− 1 divides n− 1 for all primes
p dividing n, you have to look at Euler’s extension to Fermat’s Little Theorem, which states
that for all a relatively prime to n, aφ(n)+1 − a ≡ 0 mod n. One fact about modulo is
that there is always a primitive root. A primitive root is a number where rπ(n) = 1, and
for no positive smaller such exponent is the same true. Look at those primitive roots to
the nth power. That result must be 1, due to the definition of Carmichael number, and so
φ(n) | n− 1. Since φ(n) = (p1 − 1)(p2 − 1)(p3 − 1) · · · , we obtain this criterion. This is also
sufficient, due to the fact that if this works then there could be no such a otherwise. �

Definition 8. The group ring R[G] where R is a ring and G is a group is the set of mappings
f : G → R where there are only finitely many nonzero outputs. We define elements as
expressions of the form r1g1 + · · · + rngn, and addition is defined as (r1g1 + · · · + rngn) +
(s1g1 + · · · + sngn) = (r1 + s1)g1 + · · · + (rn + sn)gn with multiplication being defined as
(r1g1 + · · ·+ rngn)(s1g1 + · · ·+ sngn) =

∑n
i=1

∑n
j=1 risjgij.

Definition 9. Carmichael’s lambda function is defined as λ(pa) = φ(pa) for p 6= 2. For a ≥ 3,
λ(2a) = 1

2
φ(2a). For a = 0, 1, 2 we get that λ(2a) = φ(2a). And for n = pa11 p

a2
2 p

a3
3 · · · p

ak
k we

get that λ(n) = λ(pa11 )λ(pa22 )λ(pa33 ) · · ·λ(pakk ).

Definition 10. n(G) is the length of the longest sequence of (not necessarily distinct)
members of G such that no subsequence of non-zero length has a product of the identity.

Theorem 11. If G is a finite abelian group and m is the maximal order of an element in

G, then n(G) < m
(

1 + log
(
|G|
m

))
.

Proof. Let g1, g2, . . . , gn be a sequence of elements of G and assume n ≥ m
(

1 + log
(
|G|
m

))
.

Choose q to be any prime with q ≡ 1 mod m and let Fq denote the field of q elements. If
we multiply out the product

(a1 − g1)(a2 − g2) . . . (an − gn) =
∑
g∈G

kgg

in the group ring Fq[G] where a1, a2, . . . an are nonzero elements of Fq and suppose that no
subsequence of g1, g2, . . . , gn has product equal to 1, then k1 = a1a2 . . . an. Thus if we can
find a1, a2, cd · · · , an such that the product is 0, we have a contradiction. We can turn a
character χ of the form G → Fq/{0} into a ring homomorphism x : Fq[G] → Fq by letting
x(
∑

g∈G kgg) =
∑

g∈G kgχ(g). From the orthogonality relations for group characters, we can

see that if b ∈ Fq[G] then b = 0 iff χ(b) = 0 for all χ ∈ G. Thus, since χ(
∏n

i=1(ai − gi)) =∏n
i=1(ai − χ(gi)), we can see that the product is 0 if for each χ ∈ G there exists 1 ≤ j ≤ n

such that χ(gj) = aj. So, we need to select a1, a2, a3 · · · an so that for each character we can
find some such j. Since G is finite, it is possible to pick such an a1 to maximize the number
of characters in G where χ(g + 1) = a1. Pick a2 such that χ(g2) = a2 for as many of the
remaining χ ∈ G as possible, and so on. Each χ(gj) is an mth root of 1 in Fq, and so can
be one of only m different values. Thus, if S is any subset of G and g is any element of G,

then there is some nonzero a ∈ Fq with χ(g) = a holding for at least |S|
m

characters χ ∈ S.

That means that χ(g) = a does not hold for at most |S|(1 − 1
m

) characters χ ∈ S. Doing

this picking method for g1, g2, · · · , gk where k = bm log( |G|
m

)c + 1 will allow us to choose
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a1, a2, · · · , ak ∈ Fq such that the set of the characters where χ(g) = 1 does not hold has
cardinality of at most

|G|(1− 1

m
)k < |G|e−

k
m < m

Since n ≥ k+m− 1, we have enough remaining ai such that we can individually pick of the
remaining characters. Henceforth we have a contradiction. Q.E.D. �

Theorem 12. Suppose that B is in the set B. There exists a number x3(B) such that if

x ≥ x3(B) and L is a squarefree integer not divisible by any prime exceeding x
(1−B)

2 and for

which
∑

primeq|L
1
q
≤ (1−B)

32
, then there is a positive integer k ≤ x1−B with (k, L) = 1, such

that

#{d | L : dk + 1 ≤ x, dk + 1 is prime} ≥ 2−Db−2

log x
#{d | L : 1 ≤ d ≤ xB}

Proof. We let x3(B) = max{x2(B), 17
1

1−B }. Suppose that B, x and L satisfy the hypotheses.
For each d ∈ DB(x) with (L, d) > 1, remove some prime factor of (L, d) from L, so as to obtain
a number L′ which is not divisible by any member of DB(x). Therefore ω(L′) ≥ ω(L)−DB,
where ω(m) is the number of prime divisors of m. For each divisor d of L with 1 ≤ d ≤ y,
the integer d′ = d

(d, L
L′ )

is a divisor of L′ in. the range 1 ≤ d′ ≤ y. Further, there are at most

2ω(
L
L′ ) ≤ 2DB different values of d which map to the same number d′. That means that

#{d | L′ : 1 ≤ d ≤ y} ≥ 2−DB#{d | L : 1 ≤ d ≤ y}

for any y ≥ 1. From the definition of B, we can see that for each divisor d of L′ with
1 ≤ d ≤ xB we have

π(dx1−B; d, 1) ≥ π(dx1−B)

2φ(d)
≥ dx1−B

2φ(d) log(dx1−B)
≥ dx1−B

2φ(d) log x

since π(y) ≥ y
log y

for all y ≥ 17. Our hypotheses stated that any prime factor q of L is at

most x
(1−B)

2 , and so we can use that π(x; q, a) ≤ 2x
ϕ(q) log(x/q)

(due to the Brun-Titchmarsh

theorem) to get

π(dx1−B; d, 1) ≥ π(dx1−B)

φ(dq) log(x
1−B

q
)
≥ 4

φ(q)(1−B)

dx1−B

φ(d) log x
≤ 8

q(1−B)

dx1−B

φ(d) log x

Therefore if we combine the two, we get that the number of primes p ≤ dx1−B with p ≡ 1

mod d and ( (p−1)
d
, L) = 1 is at least

π(dx1−B; d, 1)−
∑

prime q|L

π(dx1−B; dq, 1) ≥

1

2
− 8

1−B
∑

primeq|L

1

2

 dx1−B

φ(d) log x
≥ x1−B

4 log x
.

Thus we have at least
x1−B

5 log x
#{d | L′ : 1 ≤ d ≤ xB}

pairs (p, d) where p ≤ dx1−B is prime, p ≡ 1 mod d, (p−1
d
, L) = 1, d | L′ and 1 ≤ d ≤ xB.

Each such pair (p, d) corresponds to an integer (p−1)
d
≤ x1−B that is coprime to L, and so
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there is at least one integer k ≤ x1−B with (k, L) = 1 such that k has at least

1

4 log x
#{d | L′ : 1 ≤ d ≤ xB}

representations as (p−1)
d

with (p, d) as above. Thus for this integer k we have

#{d | L : dk + 1 ≤ x, dk + 1 is prime} ≥ 1

4 log x
#{d | L′ : 1 ≤ d ≤ xB}.

Combining this and our first equation gets us our desired equation. �

Proposition 13. Let G be a finite abelian group and let r > t > n = n(G) be integers. Then

any sequence of r elements of G contains at least
(rt)
(rn)

distinct subsequences of length at most

t and at least t− n whose product is the identity.

Proof. Let R be a sequence of r elements of G. Since r > n, there is, by the definition of
n(G), some subsequence of r whose product is 1. Let S be the longest such subsequence with
length s. Then s ≥ r − n, since otherwise R\S contains a subsequence whose product is 1,
and this subsequence might be appended to S, increasing its size, which is a contradiction.
Let T be any subsequence of S of size t−n. If the product of the elements of T is g, then the
product of the elements of S\T is g−1. Let U be smallest (possibly empty) subsequence of
S\T whose product is G−1. Evidently U has size at most n, else, by hypothesis, there exists
a subsequence of U that has product 1 and this can be removed from U to make it smaller.
Look at T ∪U = V . This is a subsequence of S and thus also R in which the product of the
elements is 1, and has size at most t − n + n = t, and at least t − n. The number of ways
of choosing such a pair of sequences (T, U) is at least the number of ways of choosing T and
is thus at least

(
s
t−n

)
. The maximum possible number of different sequences T which give

rise to the same sequence V = T ∪ U is at most
( |V |
t−n

)
≤
(

t
t−n

)
=
(
t
n

)
. That means that the

number of different subsequences V that we have created is at least(
s
t−n

)(
t
n

) ≥ (r−nt−n

)(
t
n

) =

(
r
t

)(
r
t

)
Q.E.D. �

Theorem 14. For each E ∈ E and B ∈ B and ε > 0, there is a number x0(E,B, ε) such
that C(x) ≥ xEB−ε for all x ≥ x0(E,B, ε).

Proof. Let E ∈ E , B ∈ B, ε > 0. Clearly we may assume that ε < EB. Let θ = 1
(1−E)

and

let y ≥ 2 be a parameter. Let Q denote the set of primes q in the range
(

yθ

log y
, yθ
]

where

q− 1 has no prime factors bigger than y. Due to the definition of E , for all sufficiently large
y we know that

|Q| ≥ 1

2
y1(E)

yθ

log yθ

Let L be the product of the primes q ∈ Q. We know that

logL ≤ |Q| log(yθ) ≤ π(yθ) log(yθ) ≤ 2yθ

again, for all large y. Now λ(L) is the least common multiples of the numbers q− 1, for the
primes q that divide L. Since each such q − 1 is free of prime factors exceeding y, we know
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that if pα divides λ(L), then p ≤ y and pα ≤ yθ. If we let the sequence ap be defined such
that pap is the largest power of p with pap ≤ yθ, then

λ(L) ≤
∏
p≤y

pap ≤
∏
p≤y

yθ = yθπ(y) ≤ e2θy

for all large y. Let G be the subgroup of (Z/LZ) which is multiplicative and uses all of the
relatively prime numbers. Combining both equations and Theorem 11 we get that

n(G) < λ(L)

(
1 + log

φ(L)

λ(L)

)
≤ λ(L)(1 + logL) ≤ e3θy

for all large y. Let σ = εθ
4B

and let x = ey
1+σ

. Since∑
primeq|L

1

q
≤

∑
yθ

log y
<q<yθ

1

q
≤ 2

log log y

θ log y
≤ 1−B

32

for large enough y, we can apply Theorem 12 with B, x, L. That means for all large enough
y there is an integer k coprime to l that satisfies

|P| ≥ 2−DB−2

log x
#{d | L : 1 ≤ d ≤ xB}

with P being the set of primes p ≤ x with p = dk + 1 for some divisor d of L.The product
of any

u :=

[
log(xB)

log(yθ)

]
=

[
B log x

θ log y

]
distinct prime factors of L is a divisor d of L with d ≤ xB. We deduce from the statement
regarding to the size of Q that

#{d | L : 1 ≤ d ≤ xB} ≥
(
ω(L)

u

)
≥
(
ω(L)

u

)u
= ge

(
γ1(E)yθ

2B log x

)u
=

(
γ1(E)

2B
yθ−1−γ

)u
.

Thus, with the identity (θ − 1− γ)B
θ

= EB − ε
4

we get that

|P | ≥ 2−DB−2

log x

(
γ1(E)

2B
yθ−1−γ

)[B log x
θ log x ]

≥ xEB−
ε
3

for all sufficiently large values of y. Let P ′ = P\Q. Since |Q| ≤ yθ, we have that

|P ′| ≥ xEB−
ε
2

for all sufficiently large values of y.
We can consider P ′ as a subset of the group G = (Z/LZ)∗ by considering the residue class

of each p ∈ P ′ mod L. If S is a subset of P ′ that contains more than one element and if

Π(S) :=
∏
p∈S

p ≡ 1 mod L

then Π(S) is a Carmichael number. Every member of P ′ is 1 mod k so that Π(S) ≡ 1
mod k, and thus Π(S) ≡ 1 mod kL, since gcd(k, L) = 1. However, if p ∈ P ′, then p ∈ P so
that p− 1 divides kL. So, π(S) satisfies Korselt’s criterion.

Let t = ey
1+σ2 . Then, by Proposition 13, we see that the number of Carmichael numbers

of the form Π(S) where S ⊂ P ′ and |S| ≤ t, is at least
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(|P ′|
[t]

)( |P ′|
n(G)

) ≥ (|P ′|
[t]

)[t]
|P ′|n(G)

≥
(
xEB−

ε
2

)[t]−n(G)
[t]−[t] ≥ xt(EB−ε)

for all sufficiently large values of y using various conclusions above. Since each such number∏
(x) is formed so that

∏
(S) ≤ xt, we have that for X = xt that C(X) ≥ XEB−ε for all

sufficiently large y. But X = exp(y1+σ exp(y1+
σ
2 )), so thatC(X) ≥ XEB−ε for all sufficiently

large values of X. Since y can be uniquely determined from X, this completes the proof.
Q.E.D. �
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