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Abstract. We examine the field of numbers that can be constructed using folds.
We prove results similar to those proved in the classical ruler compass constructions.

1. Introduction

Origami constructions are an lesser known variant of straight-edge compass con-
structions. When considering origami constructions, our paper is a plane, on which
we are given two points, and we can subsequently fold lines which align given points
or lines on the plane. Furthermore, we can fold the point that is the intersection
of two lines, but not necessarily every point on a line. Note that each of these are
single folds, meaning that after each fold, the paper is immediately unfolded, leaving
a crease. It turns out that these folds are in fact more powerful than ordinary ruler
compass constructions. We will first discuss the allowed folds, and define origami
numbers and points. Then we will characterize all of the origami numbers, similar to
the characterization of constructible numbers. Finally, we will revisit the problems
of trisecting and angle, doubling a cube, and foldable regular polygons with origami
numbers.

2. Origami Numbers

Before we can give a definition of origami numbers, we must describe what unique
folds are possible in each single fold construction. We use the following set of Axioms,
known as the Huzita-Hatori Axioms.

(1) Given two points p1, p2, we can fold the line ` that connects them.

(2) Given two points p1, p2, we can fold the line reflecting p1 onto p2. (perpen-
dicular bisector)

(3) Giver two lines `1, `2, we can fold the line placing `1 onto `2. (angle bisector)

(4) Given Point p1 and line `, we can fold a line perpendicular to ` through p1
(perpendicular)

(5) Given two points p1, p2, and a line `, we can fold the line through p1 reflecting
p2 onto `.
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Figure 1. Parallels

(6) Given two points p1, p2 , and two lines `1, `2, we can fold the line which reflects
p1 onto `1, and p2 onto `2.

(7) Given a point p1, and two lines `1, `2, we can fold a line perpendicular to `2
that reflecting p1 onto `1

Each of the first 4 folds are straight forward to perform. For Axiom (5), we take p1,
and slide the paper until p2 coincides with `. For (6), we place p1 onto `1, and slide
it along `1 until p2 coincides with `2. For (7), we place `2 onto itself, and slide until
p1 coincides with `1.

These Axioms were proved to be the complete set of axioms for single fold origami
folds.

Now, we can define an origami number.

Definition. A length r is origami foldable if and only if starting from two points
of unit distance apart, we perform a sequence of single folds resulting in 2 points r
units apart. A real number r is an origami number if and only if |r| is and origami
foldable length.

Definition. A point (a, b) in the plane is a origami point if and only if one can fold
it in a finite amount of single folds given the points (0, 0), (1, 0).

3. Constructions

In this section, we find a classification of the origami numbers. First, we show the
following useful property:

Lemma 1. Given a segment AB, and a point P , we can fold a segment parallel to
AB through P , with length equal to AB.

Remark 1. In [1], Alperin shows that we can achieve this with only operations (1)−
(2), but it is slightly longer.

This construction is shown in figure 1. A result of this is the another useful
property:
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Lemma 2. Given a segment AB with length r, and a point P on a line `, we can
fold the point P ′ on ` with the length of PP ′ is r.

Proof. By lemma 1, we can fold the segment PQ of length r that starts at P , parallel
to AB. Now bisect the angle given by segment PQ and line `. Finally, P ′ is the
intersection of the perpendicular from Q to this bisector and `. �

Corollary 3. (a, b) is a origami point if and only if a, b are origami numbers.

Proof. First note that we can fold the x and y axis. Now, if we have origami point
(a, b), we can fold the perpendiculars from the point to the x and y axis to get lengths
a, b. Now, if a, b are origami numbers, just use lemma 2 to translate it to the origin
on the axis, and draw perpendiculars. �

With these, we can now show that the Origami numbers form a field, and contains
the constructible numbers.

Theorem 4. The set of Origami numbers is closed under addition, subtraction,
multiplication, division, and square roots.

Proof. Note that with our Lemmas, and operations (1)-(4), we can do everything
that is required for the normal straight edge compass additions, subtractions, mul-
tiplication, and division. The square roots takes a bit more work, as we cannot fold
circles. Nonetheless, we can still do it with the help of operation (5), as follows. See
Figure 2 for reference. fold three collinear points A,B,C with AB = a, BC = 1.
Also, fold the midpoint M of AC. Now, by property (5), fold the line through M
that reflects A onto the perpendicular through B. Let Q be the intersection between
the perpendicular from A to this line and the perpendicular from B to AC. QB is√
a �

Remark 2. It is also possible to show that
√
a is foldable algebraically, noting that

(5) corresponds to drawing tangents to a parabola. [1].

Thus, the constructible numbers is a subfield of the origami numbers. It is worth
noting that each of for all of this, we have only used operations (1) − (5). In fact,
Axioms (1)− (5) are exactly the constructible numbers.
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Theorem 5. Operations (1)− (5) determine exactly the constructible numbers.

Proof. Theorem 4 shows that every constructible number can be folded with axioms
(1)− (5).

Thus, it suffices to show that each of (1) − (5) can be achieved through ruler and
compass. Axioms (1) − (4) are easy. Now, we consider (5). See Figure 3. Consider
points p1, p2, and line `. If there exists a line `1 such that `1 passes through p1, and
reflects p2 onto `, let p′2 be the reflection of p2 over `1. Now, p1 is equidistant from
p2, and p′2, thus the circle centered at p1 passing through p2 passes through p′2, so
we can construct p′2. Now, to construct `1, Just take the perpendicular bisector of
p2p′2. �

Theorem 6. The foldable numbers are closed under cube roots.

Proof. We use the method due to Beloch described in [4]. See Figure 4. We use
coordinates. For a origami number, a, we wish to fold 3

√
a. Let P = (0,−1),

Q = (−a, 0). Using (6), consider the fold placing P onto y = 1, and Q on x = a.
Let the crease created by this fold be `, and let P 7→ P ′, Q 7→ Q′.Consider Y , the
intersection of PP ′ and `. Y is equidistant to P and P ′, and thus lies on the x-axis.
Similarly, X, the intersection of QQ′ and ` lies on the Y -axis. Now, consider triangles
QXO, XOY , Y OP . They are all similar, thus QO

XO
= XO

Y O
= Y O

OP
. Substituting the

values QO = a,OP = 1, and solving for Y O in terms of a, we obtain, Y O = 3
√
a,

thus 3
√
a is indeed foldable. �

Corollary 7. Any cubic in the field of origami numbers has real roots in the origami
numbers.
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Proof. This follows from the cubic formula, it only requires cube roots and square
roots. �

Thus, we have shown that the set of origami numbers form a field closed under
square roots and cube roots. It turns out, this completely characterizes the origami
numbers- it is the smallest subfield of R closed under square roots and cube roots.
We show this in the following theorem.

Theorem 8. r ∈ R is origami foldable if and only if there is a finite sequence of
fields Q = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ R such that r ∈ Fn, and [Fi : Fi−1] = 2 or 3 for
each 1 ≤ i ≤ n

Proof. If there exists such a sequence of fields, then we can certainly fold r, as from
our above work, the origami numbers are closed under square and cuberoots. So, it
remains to prove the converse.

We only give an outline of the proof, leaving out much of the computations. In-
terested readers may see [1], or [2]. Suppose at one point in the folding, every folded
point has coordinates in a field F . We must show that each new point lies in a series
of quadratic or cubic extensions over F . Note that every new point is an intersection
of two lines, and if the lines have coefficients in a quadratic or cubic extension of F ,
then their intersection does also. Thus, we just need to show that every fold created
from F has coefficients in a quadratic or cubic extension of F . In what follows, we
assume that all current lines are of this form, to show that any newly folded line
must be of this form also. For operations (1) − (5), it is clear, as they only involve
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quadratic extensions. Furthermore, one can find that (6) only involves a cubic exten-
sion, and (7) only involves a quadratic one. Thus, in every case, we have a equation
with coefficients in a quadratic or cubic extension of F , and at the beginning, we
also do, so we are done. �

Remark 3. To show that (7) is in a quadratic extension, one can show a construction
of (7) with ruler and compass. Showing that (6) lies in a cubic extension is a bit
harder, but one can do so by showing that (6) is equivalent to finding the simultaneous
tangents between two parabolas with foci at p1, p2 and directrixes at `1, `2.

Remark 4. This shows that origami constructions are equivalent to conic construc-
tions, as in [4].

4. Greek Problems

From our above discussion of origami numbers, it is clear that through paper
folding, we can double a cube, and trisect an arbitrary angle, as they only involve
cubic equations. In fact, doubling the cube follows directly from Theorem 6. As for
the problem of squaring the circle, it is still unsolvable, as π is transcendental.

5. Regular Polygons

Now, we turn towards the problem of which regular polygons are foldable. We use
a similar method as the proof of ruler compass constructible polygons.

Lemma 9. If K/F is Galios with [K : F ] = 2α3β, then there exists a sequence of
fields F = F0 ⊂ F1 ⊂ · · · ⊂ Fn = K such that [Fi : Fi−1] = 2 or 3 for all i.

Proof. We follow the proof in [4]. Let G = Gal(K/F ). By Burnside’s p-q theorem,
G is solvable, thus there exists a composition series

G = G0 . G1 . · · · . Gn = {e}

, such that each of the quotients are abelian. Now, I claim that each of the quotients
must be of order a prime, specifically, 2 or 3. To see this, note that each of the
Quotients are simple abelian groups, and the only simple abelian groups are of prime
order (If the order were not prime, then by cauchy’s theorem, there exists a subgroup,
but as it is abelian, every subgroup is normal to it, and thus cannot be simple).

Now, to find our desired sequence of Fields, we take the sequence F = F0 ⊂ F1 ⊂
· · · ⊂ Fn = K, where each Fj = KGj . I claim that each [Fi : Fi−1] = 2 or 3. We
have [Fi : Fi−1] = [KGi : KGi−1 ] = |Gal(KGi/KGi−1)| = |Gal(K/KGi−1)/Gi| =
|Gi−1/Gi| = 2 or 3. �

Now, we are ready to prove our theorem.
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Theorem 10. A regular n-gon is origami constructible if and only if n = 2a3bp1p2 · · · pr,
for some r ∈ N where each pi are distinct primes of the form 2c3d + 1

Proof. We first show that is a regular n-gon is origami foldable, then n = 2a3bp1p2 · · · pr.
Without loss of generality, let the n-gon be centered at the origin, with one vertex at
(1, 0). If we can fold this n-gon, then we can fold the next vertex, at (cos 2π

n
, sin 2π

n
),

so cos 2π
n

is origami. Thus, [Q(cos 2πi
n

) : Q] = 2α3β, for integers α, β.

Now, I claim Q(ζn) = Q(cos 2π
n
, i sin 2π

n
). Note that ζn = cos 2π

n
+ i sin 2π

n
, thus

Q(ζn) ⊆ Q(cos 2π
n
, i sin 2π

n
). Furthermore, cos 2π

n
= ζn+ζ

−1
n

2
, and i sin 2π

n
= ζn−ζ−1

n

2
, thus

Q(cos 2π
n
, i sin 2π

n
) ⊆ Q(ζn), so they are equal, as we wanted.

Now, [Q(ζn) : Q] = [Q(cos 2π
n
, i sin 2π

n
),Q)] = [Q(cos 2π

n
, i sin 2π

n
) : Q(cos 2π

n
][Q(cos 2π

n
:

Q]. Also, [Q(cos 2π
n
, i sin 2π

n
) : Q(cos 2π

n
] = 2, as i sin 2π

n
is a root of x2 − cos2 2π

n
+ 1.

Thus [Q(ζn) : Q] = 2α+13β.
But,

[Q(ζn) : Q] = φ(n) = pe1−11 pe2−12 · · · per−1r (p1 − 1) · · · (pr − 1)

where pe11 · · · perr is the prime factorization of n. So, pe1−11 · · · pe2−12 (p1−1) · · · (pr−1) =
2α+13β, which is enough to imply that n is indeed of our desired form.

Now, we must show the reverse direction, if n = 2a3bp1p2 · · · pr, then we can fold a
n-gon. Note that if we can fold cos 2π

n
, then we can fold the regular polygon centered

at the origin with vertex at (1, 0). Indeed, we can then fold the point (cos 2π
n
, sin 2π

n
),

as sin 2π
n

=
√

1− cos2 2π
n

is foldable. Then, after that, we can symmetrically fold

the rest of the coordinates of the polygon. Thus, it suffices to show that we can
fold cos 2π

n
. Note that Q(cos 2π

n
)/Q is Galios. To see this, note that Gal(Q(ζn)/Q) is

abelian, so A = Gal(Q(ζn)/Q(cos 2π
n

)) /Gal(Q(ζn)/Q), thus Q(ζn)A = Q(cos 2π
n

) is a
normal extension of Q, and is thus Galios as separability carries over from being a
subfield of Q(ζn).

Now, note that [Q(ζn) : Q] = φ(n) = 2α3β for some α, β in the integers, and as with
the preceeding discussion while proving the other direction, [Q(cos 2π

n
) : Q] = 2α−13β.

Now, as Q(cos 2π
n

)/Q is Galios, Lemma 9 implies the result.
�
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