
Draft - Further Classical Topics In Finite Group Theory

Tanvi Deshpande

May 27, 2020

1 Introduction

Nilpotent groups are an interesting class of groups that are ”intuitively almost abelian”.
There are many interesting concepts that arise out of the study of nilpotent groups, such as
the Frattini subgroup.

Nilpotent groups are most often studied in the context of Galois theory and in the study
of Lie groups. They are based off of the idea of a ”central series” which essentially generates
an abelian group from a nonabelian one. In this paper, we discuss the definition of nilpotent
groups and the interesting results which arise out of their study.

2 Central Series

First, it is important to define central series, which make up the definition of nilpotent
groups. Central series, as the name implies, deal with the center of each successive subgroup.
Groups need not have central series - if a group has a central series, then it is nilpotent.

Definition 2.1. A central series of a group G is a subgroup sequence e = G0 C G1 C
. . . C Gn = G, such that Gi C G and Gi+1/Gi ≤ Z(G/Gi) or [G,Gi+1 ≤ Gi for i such that
0 ≤ i ≤ n. [RD]

The two equivalent parts of this definition can also be described in terms of lower and
upper central series - both separate ways of describing the same concept.

Definition 2.2. A lower central series is the sequence of subgroups of a group G ending in
e where γ1(G) = G and γi+1(G) = [γi(G), G] for i ≥ 1, or the commutator subgroup of γi(G)
and G. [RD]

We define [g, h] = ghg−1h−1. [γi(G), G] is the commutator subgroup, or the group gen-
erated by all products of elements 〈 [a, b] | a ∈ γi(G), b ∈ G 〉. This definition means that the
commutator subgroup is the extent to which a group fails to be abelian - the larger it is,
the less abelian the group, since less elements of the group commute with each other. For
abelian groups, the commutator subgroup is just {e}, since all elements commute with each
other and therefore ghg−1h−1 is e for all elements g, h ∈ G.
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Definition 2.3. An upper central series of a group G is a subgroup sequence e = Z0 C Z1 C
. . . C Zn = G, such that Z1 = Z(G) and Zi+1/Zi is central in the quotient group G/Zi for
0 ≤ i ≤ n.

The center of a group G, or Z(G), is the set of elements which commute with all other
elements of G. For upper central series, each successive subgroup Gi must be normal in G,
and Gi+1/G must be the center of G/Gi. This definition ties in with the ”almost abelian”
aspect of nilpotent groups, since the center of a group is the set of all elements which commute
with all other elements of a group.

All three definitions are equivalent and acceptable in defining nilpotent groups.

3 Nilpotent groups

Definition 3.1. A group G is a Nilpotent group if and only if it has a central series of finite
length. [Dic]

Since central series, lower central series, and upper central series all describe the same
concept, we can give similar definitions for lower and upper central series. A group is also
nilpotent if it lower central series that eventually reaches the trivial subgroup e. Similarly, a
group is nilpotent if it has an upper central series terminating in G.

Definition 3.2. A group G has nilpotency class c where γc+1 = e. [Dic]

The nilpotency class of a nilpotent group is the minimal length of its lower and upper
central series. A nilpotent group with nilpotency class of at most n is also called a nil-n
group.

Theorem 3.3. Every abelian group is nilpotent.

Proof. The lower central series of any abelian group starts with γ1(G) = G. As mentioned
before, the commutator of an abelian group is e and so γ2(G) = {e} . So, G has a lower
central series of finite length. Therefore, any abelian group is nilpotent with nilpotency class
1. [Bad]

As an example of a nonabelian nilpotent group, we take Q8, or the quaternion group.
The quaternion group is a group with 8 elements, consisting of the elements 1,−1 as well

as i, j, k,−i,−j,−k, which are all square roots of −1. Furthermore, ij = k, ji = −k, jk =
i, kj = −i, ik = j, ki = −j. The rest of the relations are obtained from these.

We show this group to be nilpotent through constructing a lower central series. γ1(G) =
G = Q8. The commutator subgroup of G is γ2(G) = {−1, 1}. The commutator subgroup of
this group is γ3(G) = {1}, the identity, meaning the group is nilpotent with nilpotency class
2.

We can also construct an upper central series for Q8. As in the definition, Z1 = Z(Q8) =
{1,−1}. To find Z2, we find the group such that Z2/Z1 is central in G/Z1 = Q8/{1,−1} =
{{1,−1}, {i,−i}, {j,−j}, {k,−k}}. The center of this group is the group itself (G/Z1) -
every element commutes with every other element. Therefore, Z2 = G, meaning the group
is nilpotent, since it terminates in G. This also shows that it has a nilpotency class of 2.
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Theorem 3.4. Finite p-groups are nilpotent.

Proof. A p-group is a group in which all elements (and correspondingly the group itself)
have orders which are a power of p.

Consequently, G/Zi is a p-group as well (since the index of Zi must be a power of p and
therefore the order of the quotient group is also a power of p→ it is a p-group.

Another property of p-groups is that they have a nontrivial center. That is, for a p-group
G, Z(G) 6= {e}. Therefore, by this theorem, Z(G/Zi) is nontrivial. Therefore, Z(G/Zi) ⊆
Z(G/Zi+1) for i and Z(G/Zi) 6= Z(G/Zi+1).

Example: We show that the dihedral group D4 with order 8 is nilpotent using lower cen-
tral series. The commutator subgroup of D4 is γ1(G) = {e, ρ2}. To obtain γ2(G) we compute
[γ1(G), G]. This is equal to {e}: for g, h in these respective groups, [g, h] = ghg−1h−1 = e,
because both e and ρ2 commute with all elements of the group. Thus, γ2(G) = {e} and the
group D4 has a lower central series, making it nilpotent.

Theorem 3.5. The direct product of two nilpotent groups is nilpotent.

Proof. To begin the proof, we define G = H×K, where H and K are nilpotent. To construct
a lower central series, we can use the fact that [H×K,H×K] = [H,H]× [K,K] = H1×K1

and [H1 ×K1, H ×K] = [H1, H]× [K1, K] and so on for all i for which there is Hi and Ki.
We denote Gi = [Gi−1, G]. If we show that Gi ≤ Hi ×Ki for all i, we will be able to show
that Gi eventually reaches the trivial group e.

We can do this inductively: for the base case, we already know that G1 = [H ×K,H ×
K] = H1×G1. Next, we know that, by the inductive hypothesis, Gi ≤ [Hi−1×Ki−1, H×K] ≤
[Hi−1, H]× [Ki−1, K] = Hi×Ki. Having inductively proved that Gi ≤ Hi×Ki, and knowing
that H and K are nilpotent, since Hi and Ki eventually go to e, Gi must also eventually
become e, meaning G is nilpotent.[Gar]

Theorem 3.6. A finite group is nilpotent if every Sylow subgroup of it is normal.

4 Maximal Subgroups

Definition 4.1. A subgroup H of a group G is maximal if it is a proper subgroup such that
no proper subgroup K exists where H is a proper subset of K. [Bad]

This definition doesn’t just include subgroups of the highest order - it allows for multiple
maximal subgroups, since some subgroups may exist which are not contained within the
subgroup(s) of highest order.

Definition 4.2. A maximal normal subgroup N of G is a maximal proper subgroup which
is also normal, and the only normal subgroup containing it is the entire group. [Bad]

Equivalently, N must be normal and G/N must be a simple group. [Gar]

Theorem 4.3. A normal subgroup N of a group G is a maximal normal subgroup iff the
quotient G/N is a simple group.
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Proof. This essentially follows from the 4th isomorphism theorem (or the correspondence
theorem), which states that for a group G and a normal subgroup N , there is a bijection
between the set of all subgroups of G containing N and the subgroups of the quotient group
G/N . If the group G/N is simple, then, since it has no subgroups, the subgroup is not
contained in any other groups, making it a maximal normal subgroup. [Iso]

Next, we look at an example of maximal normal subgroups, namely the maximal normal
subgroups of S4. The nontrivial normal subgroups of S4 are A4 and normal V4, and of these,
only A4 is maximal.

5 The Frattini Subgroup

Definition 5.1. The Frattini Subgroup of a group G (denoted Φ(G)) is a (normal) subgroup
which is the intersection of all maximal subgroups of G.

The Frattini subgroup is a concept first introduced by Giovanni Frattini in 1885, defined
as the intersection of the maximal subgroups of a group G.

Remark 5.2. Frattini’s argument for Sylow p-subgroups: States that for a normal subgroup
H of a group G and for P , a Sylow p-subgroup of H, G = NG(P )H, where NG(P ) is the
normalizer of P in G.

Definition 5.3. The normalizer of a subgroup P in group G is the set of elements of G which
commute with the subgroup P . Equivalently, it is the largest subgroup K (P ≤ K ≤ G) in
which P is normal.

Proof. We prove that any element of g is in NG(P )H. First, we conjugate both sides of the
relation P ≤ H to get g−1Pg ≤ g−1Hg = H, since H is normal in G. Because g−1Pg ≤ H
and its order is the same as P (since conjugation is injective/on-to-one), the group g−1Pg is
also a Sylow p-subgroup of H.

Since Sylow p-subgroups are conjugate by the second Sylow theorem, we can conjugate
P once again by h ∈ H to get h−1Ph = g−1Pg. Next, we conjugate both sides by h ∈ H
and see that P = hg−1Phgh−1. Now, we know that, due to the definition of a normalizer,
gh−1 ∈ NG(P ), since it commutes with P . Therefore, multiplying by h on both sides yields
g ∈ NG(P )h for all g ∈ G, meaning that G = NG(P )H.

The Frattini argument is an important part of Frattini’s work - it can also be applied
to automorph-conjugate subgroups, which are subgroups such that the subgroups they are
mapped to via automorphism are also conjugate to the subgroup. We will use the Frattini
argument to prove the next theorem - that the Frattini subgroup is nilpotent.

Theorem 5.4. The Frattini Subgroup is the subset of all non-generators of G.

Definition 5.5. A non-generating element of a group G is an element of the group that is
not required to be part of the generating set, which is the set of elements of G from which
all elements of the group can be obtained.
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The proof of this theorem is slightly beyond the scope of this paper, as it requires Zorn’s
lemma and other parts of set theory, but it is needed to prove the next theorem, that the
Frattini Subgroup is nilpotent.

Theorem 5.6. The Frattini Subgroup of a finite group G is nilpotent.

Proof. We know that a finite group is nilpotent if every Sylow p-subgroup of it is normal.
Therefore, we use the Frattini Argument to prove that every Sylow p-subgroup of the Frattini
Subgroup is normal.

Since Φ(G) C G, by the Frattini Argument, Φ(G)NG(P ) = G for any Sylow p-subgroup
of G. By Theorem 5.5, since the Frattini subgroup is all nongenerators of the group, we can
”delete” its elements from the product and still end up with the whole group. Therefore
NG(P ) = G. Since the normalizer of P is the set of elements in the group that commute
with P , because its G, P commutes with the whole group, making it normal. This is true
for any Sylow p-subgroup of G, meaning it is nilpotent.
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