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Abstract. We review the classical results on compass and straightedge constructions and
use field theory to characterize the constructible points. Then, we introduce three conic
drawing tools and prove that they are equivalent. We determine the set of conic constructible
points. Finally, we prove that certain restrictions of our tools does not affect the set of
points that we can construct. In particular, we discuss the Mohr-Mascheroni theorem and
the Poncelet-Steiner theorem and prove that all conic constructible points can be drawn
using only compass and straightedge constructions if we start with a non-degenerate conic
different from a circle.

1. Introduction

We define straightedge and compass constructions in the following manner. Initially, we
are given the points (0, 0) and (1, 0) on the Cartesian plane, and we can make the following
moves:

• Draw a line through two already constructed points.
• Given two non-parallel lines, find their point of intersection.
• Given a point P and a segment of length a, draw the circle centered at P with radius
a.
• Given a line and a circle, find their point(s) of intersection, if any.
• Given two circles, find their point(s) of intersection, if any.

Compass and straightedge constructions were first defined and attempted by Greek math-
ematicians. They were able to add, subtract, multiply, and divide lengths as well as take
square roots. Moreover, they could bisect any arbitrary angle. However, the following three
challenges remained unsolved:

(1) Given an angle, is it possible to trisect it?
(2) Given a segment of length 1, is it possible to construct a cube of volume 2?
(3) Given a circle, is it possible to construct a square with the same area?

Now, with the techniques of field theory and field extensions, these challenges can be
shown to be impossible (See Corollary 2.4). In fact, we have a nice characterization for when
a length is constructible from a compass and straightedge (See Theorems 2.3 and 2.6).

We can ask about which lengths are constructible given different sets of tools. The fol-
lowing sets of tools will be addressed in this paper.

(1) What if we only have a compass? or only a straightedge?
(2) What if we can draw ellipses? or parabolas? or a general conic?
(3) What if we are given a single conic and can only draw using a compass and a straight-

edge?
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The rest of the paper is organized as follows. Section 2 gives an overview of the process used
to determine the classical constructible numbers (only using a compass and straightedge).
Section 3 answers which lengths can be constructed if we have a conic drawing tool. Section
4 gives some ways in which we can restrict our usage of the compass and/or straightedge
but still construct the classically constructible lengths. Section 5 answers which points can
be obtained with compass and straightedge constructions if we are initially given a fixed,
non-degenerate conic.

If the reader took Simon’s class on Abstract Algebra, then we suggest skipping much of
Section 2, but taking the time to read Definition 2.5 and Theorem 2.6 as those were not
covered in the class.

This paper assumes a basic understanding of field theory and field extensions.

2. Constructible Numbers

In this section, we will find a criterion for constructible points in terms of towers of field
extensions of degree 2. This allows us to answer the three Greek challenges and identity the
constructible regular n-gons. Then, we introduce the notion of a normal closure of a field
extension and use it to find a criterion for constructible points only dependent on the degree
of the normal closure over Q.

The Greeks showed that given segments of lengths a and b, segments of lengths a+b, a−b,
a/b (assuming b 6= 0), ab,

√
a can be constructed. They also figured out how to bisect any

given angle. These constructions give us field operations on the set of constructible lengths.
Thus, we can define the fields of constructible numbers and constructible points.

Definition 2.1. A real number r is a constructible number if a line segment of length |r|
can be constructed with a compass and a straightedge in a finite number of steps. These
numbers form a subfield of R.

Definition 2.2. A point P = (x, y) is a constructible point if it can be constructed in a finite
number of straightedge and compass construction steps. Equivalently, P is constructible if
x and y are constructible numbers. We identity this point as the complex number x + iy
and recognize the field of constructible points as a subfield of C.

It turns out that all three Greek challenges are impossible using straightedge and compass
constructions. We will show this in the rest of this section using field theory and the fact
that π is transcendental.

First we should check that the field of constructible points is the smallest subfield of C
that is closed under square roots. We leave it as an exercise to prove that we can find

√
a

given a using the following diagram.
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Thus, we know how to take square roots, so we now need to check that every possible oper-
ation only requires field operations and taking square roots of already constructed lengths.

A line through two constructed points is expressible as y = ax + b where a, b are
constructible numbers. A circle with a constructed center and radius is expressible as
(x − x0)

2 + (y − y0)
2 = r2 where x0, y0, r are all constructible numbers. Finding the

intersection of any two lines, line and circle, or two circles requires solving a polynomial of
degree at most 2 in either of the coordinates. Thus, the coordinate will be expressible in
terms of square roots of constructible numbers. Hence, the field of constructible points is
the smallest subfield of C that is closed under square roots.

This proves the following theorem.

Theorem 2.3. A point z ∈ C is constructible if and only if there is a sequence of fields
F0 = Q ⊆ F1 ⊆ · · · ⊆ Fn ⊆ C with [Fi : Fi−1] = 2 for all i, and z ∈ Fn.

We will refer to a tower of fields with consecutive degrees 2 as a (2)-tower. This notion
will be more useful when we look conics in Section 3. If we allow the consecutive fields to
have degree 2 or 3, then we call the tower of fields a (2, 3)-tower.

Corollary 2.4. The three Greek problems are impossible.

Proof. Trisecting an angle is equivalent to producing cos θ given cos 3θ, or solving for cos θ
in

cos 3θ = 4 cos3 θ − 3 cos θ.

Setting θ = 60◦, we can show that the resulting polynomial in cos θ is irreducible over
Q. This implies that [Q(cos 20◦) : Q] = 3. Thus, Theorem 2.3 implies that cos 20◦ is not
constructible, and we cannot trisect a 60◦ angle.

Duplicating the cube is equivalent to producing a length of 3
√

2, which has the minimal
polynomial x3 − 2. Thus, [Q( 3

√
2) : Q] = 3. So 3

√
2 is not constructible.

Squaring the circle requires producing
√
π, or equivalently π. However, π is transcendental,

so Q(π) would have infinite degree over Q. Thus, π is not constructible. �

It follows from Theorem 2.3 that if z is a constructible number, then Q(z) has degree 2n

over Q for some n ∈ N. The converse turns out to be false; there exists a z ∈ C such that
[Q(z) : Q] = 4 but z is not constructible. To understand why, we need to introduce the
concept of a normal closure.

Definition 2.5. If K is a field and L is an algebraic extension of K, then there is some
algebraic extension M/L such that M is a normal extension of K. There is only one such
extension that is minimal, up to isomorphism. This extension is called the normal closure
of the extension L/K.

Example. The field extension Q( 4
√

2)/Q is not normal since the minimal polynomial of 4
√

2,
x4 − 2, has non-real zeros. The normal closure of Q( 4

√
2)/Q is Q(i, 4

√
2)/Q, obtained by

adjoining all of the zeros of x4 − 2.

We are now ready to state and prove a stronger criterion for constructible numbers.

Theorem 2.6. A complex number z is constructible if and only if z is algebraic over Q and
the normal closure K/Q of Q(z)/Q has dimension 2n over Q where n ∈ Z≥0.
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Proof. Suppose that z is constructible. By Theorem 2.3, it is contained in an (2)-tower
Q(α1, . . . , αl). We may assume that this (2)-tower is a Galois extension over Q: the argument
that we used to show that a radical extension can be turned into a Galois extension holds
(See Chapter 9, Section 4 of the Abstract Algebra book). Now, the normal closure K/Q
of Q(z)/Q is a subfield of Q(α1, . . . , αl), which has dimension 2n over Q. Thus the normal
closure has order dividing 2n, so it has order 2s for some s ∈ N.

Conversely, suppose the normal closure K/Q of Q(z)/Q has dimension 2s over Q. The
Galois group G = Gal(K/Q) has order 2s. By group theory, G is solvable and G has a
decomposition series

G = G1 BG2 BG3 B · · ·BGk = {e}
such that Gi/Gi+1 is of order 2. By the Galois correspondence, we obtain a sequence of
subfields of K such that

Q = F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ Fk = K

where Fi is the subfield of K fixed by Gi for 1 ≤ i ≤ k. In particular, [Fi+1 : Fi] = 2. Write
Fi+1 = Fi(αi) for some element αi ∈ Fi+1.

Any degree 2 extension is obtained by adjoining a square root: any α ∈ Ki+1 \Ki has a
minimal polynomial of degree 2 over Ki; adjoin the square root of the discriminant to Ki

to obtain Ki+1. Hence, z belongs to a (2)-tower over Q and is constructible by Theorem
2.3. �

We provide an example that demonstrates the utility of Theorem 2.6. Consider the poly-
nomial p(x) = x4 − x− 1, which is irreducible over Q. Thus, if z ∈ C is a zero of p(x), then
[Q(z) : Q] = 4. Let F/Q be the normal closure of Q(z)/Q. The cubic resolvent of p(x) is
a cubic polynomial irreducible over Q, and its roots are elements of F . This implies that 3
divides [F : Q]. Thus, z is not constructible even though [Q(z) : Q] = 4.

Another problem of interest for mathematicians was determining which regular n-gons are
constructible. Remember that a regular n-gon is a regular polygon with n sides. The Greeks
knew how to construct regular 3, 4, 5-gons as well as construct a regular 2n-gon given a
regular n-gon. In 1796, Carl Fredrich Gauss proved the constructibility of the regular 17-gon
and, five years later, found a sufficient condition for a regular n-gon being constructible. He
claimed that the condition was also necessary, but he did not give a proof of it. A proof of
the condition’s necessity was given by Pierre Wantzel in 1837. They proved the following
theorem:

Theorem 2.7 (Gauss-Wantzel). A regular n-gon can be constructed with compass and
straightedge if and only if n is the product of a power of 2 and any number of distinct
Fermat primes (including none).

A Fermat prime is a prime in the form 22k + 1. It turns out that if 2k + 1 is a prime, then
k must be a power of 2. Assuming this fact, we can use Theorem 2.6 to prove Theorem 2.7.

Proof. An exterior angle of a regular n-gon is 2π
n

radians. Thus, if we can construct a 2π
n

radian angle, we can construct consecutive sides of the regular n-gon and eventually construct
the entire polygon. Conversely, given a regular n-gon, we can extend one of the sides to find
a 2π

n
radian angle. We can construct a 2π

n
angle if and only if we can construct the point

(cos 2π
n
, sin 2π

n
). This point is represented by the nth of unity ζn = e2πi/n. Thus, a regular

n-gon is constructible if and only if ζn is constructible.
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Note that the normal closure of Q(ζn)/Q is just Q(ζn)/Q, so it has degree φ(n) over Q
where φ(n) is the Euler Totient function. Writing the prime factorization of n as 2e1pe22 · · · p

ek
k ,

we obtain φ(n) = 2e1−1pe2−12 (p2 − 1) · · · pek−1k (pk − 1). Theorem 2.6 tells us that ζn is con-
structible if and only if φ(n) is a power of 2. Thus, ei = 1 for i > 1, and pi − 1 must be a
power of 2 for i > 1. It is well-known that if 2k + 1 is prime, then must have k be a power
of 2. Thus, for i > 1, pi must be a Fermat prime. �

3. Drawing with Conics

Definition 3.1. A point is conic constructible (or is said to have solid construction) if it
can be constructed using a straightedge, compass, and a hypothetical tool that can draw
any conic with an already constructed focus, directrix, and eccentricity.

Example. Consider the conic given by the focus (0, 1/4), the directrix y = −1/4, and ec-
centricity e = 1. A point (x, y) is on this conic if the distance to the focus is equal to the
distance to the directrix. Using the distance formula gives

x2 +

(
y − 1

4

)2

=

(
y +

1

4

)2

.

Some algebraic manipulation gives an equation for a parabola:

x2 =

(
y +

1

4

)2

−
(
y − 1

4

)2

,

x2 =

(
y +

1

4
+ y − 1

4

)(
y +

1

4
− y +

1

4

)
,

x2 = 2y · 1

2
,

x2 = y.

In the following two propositions, we discuss two alternative methods of drawing conics
that turn out to be equivalent to the method using the directrix, focus, and eccentricity. To
simplify notation, let K be a subfield of R such that every positive number x ∈ K has a
square root in K. A line passing through two points of K2 is called a line in K. A circle is
called a circle in K if its center is in K2 and it passes through a point in K2. Similarly, a
conic is called a conic in K if its foci are in K2, its directrix line is in K, and its eccentricity
is in K. Note that our conic drawing tool allows us to draw conics in K.

We can define an ellipse by its two foci F1, F2 and its semi-major axis a. The ellipse is
the set of points P for which the F1P + F2P = 2a. The next proposition shows that this
construction method for ellipses is equivalent to our conic drawing tool for eccentricity e < 1.
For the next proposition, the variables a, b, c represent the semi-major axis, semi-minor axis,
and half of the distance between the two foci of an ellipse.

Proposition 3.2. Let E be a non-degenerate ellipse. Then E is in K if and only if its foci
are in K2 and its semi-major axis is in K.

Proof. Suppose that an ellipse E is in K. We know that the directrix l, the focus F , and the
eccentricity e < 1 are in K. We can find the perpendicular distance m between the directrix
and the focus using a compass and straightedge, so m ∈ K. The original ellipse is congruent
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to the ellipse given by directrix x = 0, focus (m, 0), and eccentricity e. Thus, it suffices to
prove that a, b, c of the new ellipse are in K. Using the distance formula gives√

(x−m)2 + y2

x
= e,

(x−m)2 + y2 = e2x2,

(1− e2)x2 − 2mx+m2 + y2 = 0,

(1− e2)x2 − 2mx+
m2

1− e2
+ y2 =

m2

1− e2
−m2,

(1− e2)
(
x− m

1− e2

)2

+ y2 =
m2e2

1− e2
,(

x− m
1−e2

)2(
me
1−e2

)2 +
y2(
me√
1−e2

)2 = 1.

Thus, a = me
1−e2 , b = me√

1−e2 , and c =
√
a2 − b2. This proves the forward direction.

For the other direction, we can find c because it is half of the distance between the two
foci. Moreover, b =

√
a2 − c2 so b and c are in K. Then we explicitly solve for e in terms

of a and b: e =
√

1− b2

a2
. This allows us to also solve for m using the above formulas. We

can find the slope of the directrix as it is perpendicular to the line connecting the two foci.
Finally, we can find a single point on the directrix by noticing that the point of intersection
of the directrix and the line connecting the foci is a distance (a − c) e+1

e
away from one of

the foci. Thus, the directrix is in K, both foci are in K, and e is in K, so the ellipse is in K
as desired. �

Another way that we can define a conic is by the equation

(3.1) ax2 + bxy + cy2 + dx+ ey + f = 0.

where a, b, c, d, e, and f are in K. This construction is equivalent to the directrix, focus,
eccentricity construction. First, we need a lemma and proposition to help us rotate conics
so that the bxy term vanishes.

Lemma 3.3. Let E be a conic in K. If cos θ ∈ K, then the conic obtained by rotating E
about the origin by an angle θ can be expressed by an equation with coefficients in K.

Proof. Let θ be the angle of rotation. The transformed conic is described by the equation
a′x2 + b′xy + c′y2 + d′x+ e′y + f ′ = 0 where the coefficients are:

a′ = a cos2(θ) + b sin(θ) cos(θ) + c sin2(θ),

b′ = 2(c− a) sin(θ) cos(θ) + b(cos2(θ)− sin2(θ)),

c′ = a sin2(θ)− b sin(θ) cos(θ) + c cos2(θ),

d′ = d cos(θ) + e sin(θ),

e′ = e cos(θ)− d sin(θ),

f ′ = f,

which all only require field operations on the elements of K. Therefore, the coefficients of
the transformed conic are in K. �
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Proposition 3.4. Let E be a non-degenerate conic (different from a circle), defined by the
equation ax2 + bxy + cy2 + dx + ey + f = 0. Then E is in K if and only if the coefficients
a, b, c, d, e, and f are in K. If E is in K, then it can also be rotated and translated into

a conic in K in standard position i.e. it can be expressed by the equation x2

a2
+ y2

b2
= 1 for

a, b ∈ K.

Proof. The forward direction involves explicitly writing out the equation for the conic defined
by the directrix, focus, and eccentricity. Then, one can collect like-term to show that the
coefficients lie in K. We leave this as an exercise to the reader.

For the converse, let the conic E be expressed by the equation ax2+bxy+cy2+dx+ey+f =
0. Let θ denote the angle of rotation that is required to vanish the bxy term. For b = 0,
θ is 0 or π

2
. Thus assume that b 6= 0. In this case, cot(2θ) = a−c

b
∈ K. Moreover,

sin(2θ) = 1√
1+cot2(2θ)

∈ K. Then, from cos(2θ) = sin(2θ) cot(2θ) ∈ K and the half-angle

formulas cos(θ) = ±
√

1+cos(2θ)
2

and sin(θ) = ±
√

1−cos(2θ)
2

, we find that sin(θ) and cos(θ) are

in K. Thus, Lemma 3.3 enables us to rotate E by θ to get a conic expressed by the form

(x− x0)2

(a′)2
+

(y − y0)2

(b′)2
= 1.

Translation by (−x0,−y0) gives the conic in standard form.
From the coefficients of the standard form equation, we can find its directrix, its focus,

and its eccentricity. Then, we can translate the focus and the points on the directrix by
(x0, y0) and apply a rotation of −θ about the origin to obtain the directrix and the focus of
E. As the directrix line and the eccentricity are in K and the focus is in K2, E is in K. �

Note that by choosing some of the constants in Equation 3.1 to be 0, we can reduce the
equation of a conic to that of a line or a circle. Thus, when we are considering the possible
intersections of lines, circles, and conics, we only need to look at the intersection of two
conics.

This problem reduces to solving two conic equations simultaneously, which turns out to
be equivalent to solving a quartic polynomial in x or y.

Proposition 3.5. The intersection points of two conics in K have x, y-coordinates that are
roots of a quartic equation with coefficients in K.

Proof. We provide a sketch of the proof. Assume that the coefficients of the y2 terms are
nonzero. By multiplying the equations for the conics by an appropriate factor, we can force
the coefficient of the y2 term to be 1 for both conics. Subtract the equations to obtain an
equation linear in y. Solve for y in terms of x: we get a rational function in x—degree 2 in
the numerator and degree 1 in the denominator. Now, this expression can be substituted
back into one of the original equations to obtain a quartic equation in x.

The case when one or both of the coefficients of the y2 terms are zero can be treated in a
similar manner by skipping the first few steps of the above algorithm. �

We have already seen how to solve quartic polynomials; roots of degree 4 polynomials can
always be expressed in terms of square roots and cube roots of the coefficients. However, we
describe the proof in an alternative way that enables us to decompose a degree 3 or 4 field
extension into a tower of field extensions so that at each step, a single cube root or square
root is adjoined.
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Theorem 3.6. The roots of any cubic or quartic polynomial can be expressed in terms of
square roots and cube roots of the coefficients.

Proof. Let K be a field of characteristic 0, and let f = x3 +a2x
2 +a1x+a0 be an irreducible

cubic over K. Let y = x = 1
3
a0 so that f = y3 + py + q where p = q1 − 1

3
a22 and q =

a0 + 2
27
a32 − 1

3
a2a1. Let L be the splitting field of x3 + px + q over K. There is an element

δ ∈ L such that δ2 = ∆ = 4p3 − 27q2, the discriminant of x3 = px+ q (This was an exercise
in Chapter 7 of the Abstract Algebra book). Let ω 6= 1 be a cube root of unity. Its minimal
polynomial is x2 + x+ 1 over K, unless ω ∈ K.

We consider the following diagram of fields:

In the field L(ω), set β = α1 + ωα2 + ω2α3 and γ = α1 + ω2α2 + ωα3 where α1, α2, α3 are
the three roots of x3 + px+ q = 0.

We can be compute that β3 and γ3 are the elements 27
2
q ± 3

2
(2ω + 1)δ. Thus, β3 and γ3

belong to K(δ, ω). The field extension K(δ, ω)/K has degree at most 4. If it has degree
4, then it has a subfield K(δ) of degree 2 over K. Notice that γ = −3p/β, and that
α1 = 1

3
(β + α), α2 = 1

3
(ω2β + ωγ), and α3 = 1

3
(ωβ + ω2γ). Hence, L(ω) = K(δ, ω, β), and

L(ω) = K(δ, ω)(β) with β3 = K(δ, ω).
Finally, we have shown that if α is a root of x3 + px + q = 0, then there exist fields

K ⊂ K(δ) ⊂ K(δ, ω) ⊂ K(δ, ω, β) such that γ2 ∈ K, ω3 ∈ K(δ), β3 ∈ K(δ, ω), and
α ∈ K(δ, ω, β). Thus, at each step we need to adjoin a square root or cube root. This shows
that α can be expressed in terms of square roots and cube roots of elements in K.

The case for quartic polynomials is treated in a similar way. We look at the quartic
formula that we have derived before, at look at which square roots or cube roots we need
at each step. Then, we can construct the subfields one at a time to obtain a sequence of
fields K ⊂ K(α1) ⊂ K(α1, α2) ⊂ K(α1, α2, α3) ⊂ K(α1, α2, α3, α4) where αn1 ∈ K and
αni ∈ K(α1, . . . , αi−1) for i = 2, 3, 4 and n ∈ {2, 3}; the roots of the quartic equation will
belong to K(α1, α2, α3, α4). This shows that the roots can be expressed as square and cube
roots of elements in K. �

In reality, we would first derive the cubic or quartic formula in a more primitive manner,
then translate that into a proof about forming a tower of field extensions only involving
adjoining square roots and cube roots.
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Now we know that the field of conic constructible numbers has to be closed under square
roots and possibly cube roots. We don’t know quite yet if we require closure under cube
roots as it could turn out that every quartic polynomial we want to solve only requires
taking square roots (we don’t have full control of the coefficients of the quartic polynomial).
Proving that we require cube roots requires explicit construction. The following theorems
give us some different ways to construct the cube root.

The following construction is due to Aliska Gibbins and Lawrence Smolinsky [GS09].

Theorem 3.7. If a is conic constructible, then 3
√
a can be constructed using two ellipses.

Proof. Consider the following equations of ellipses with coefficients in F :

2x2 + y2 − ax+ 2
√

2y + 1 = 0

3x2 + y2 − ax+ (1 + 2
√

2)y +
√

2 = 0.

It can be shown that the x-coordinates of the points of intersection satisfy

x4 − ax = 0.

The real roots are 0 and 3
√
a. �

The following construction is given in [Vid97], and the author accredits it to Menachmus
from 350 B.C.

Theorem 3.8. If a is conic constructible, then 3
√
a can be constructed using two parabolas.

Proof. Draw a parabola P1 with focus (0, 1
4
) and directrix y = −1

4
. Its equation is y = x2.

The parabola P2 has its focus at (a
4
, 0) and its directrix at x = −a

4
. Its equation is x = y2

a
.

Thus, the point of intersection is obtained by solving

y = x2 =

(
y2

a

)2

,

so

y(y3 − a2) = 0.

The real roots are y = 0 and
3
√
a2. The x-coordinates are 0 and 3

√
a, respectively. �

Theorems 3.7 and 3.8 actually tell us something stronger about conic constructible num-
bers: we only need to be able to draw ellipses (or parabolas) to construct all conic con-
structible numbers.

Let us complete this section by describing the field of conic constructible numbers using
field theory.

Theorem 3.9. Let z ∈ C. Then z is conic constructible if and only if z is contained in a
subfield of C of the form Q(α1, α2, . . . , αl) where αn1 ∈ Q and αni ∈ Q(α1, α2, . . . , αi−1) for
2 ≤ i ≤ l − 1 and n ∈ {2, 3} (n can be different for each αi). We will call such a field a
(2, 3)-tower over Q.

Proof. This is automatic by the fact that conic constructible numbers form the smallest
subfield of C closed under square roots and cube roots. �

The following theorem due to Carlos R. Videla [Vid97] characterizes conic constructible
numbers.
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Theorem 3.10. A complex number z is conic constructible if and only if z is algebraic over
Q and the normal closure K/Q of Q(z)/Q has dimension 2n3m over Q where m,n ∈ Z≥0.

Proof. Suppose that z is conic constructible. By Theorem 3.9, it is contained in an (2, 3)-
tower Q(α1, . . . , αl). We may assume that this (2, 3)-tower is a Galois extension over Q:
the same proof that we used to show that a radical extension can be made into a Galois
extension holds here (See Chapter 9, Section 4 of the Abstract Algebra book). Now, the
normal closure K/Q of Q(z)/Q is a subfield of Q(α1, . . . , αl), which has dimension 2n3m over
Q. Thus, [K : Q] divides [Q(α1, . . . , αl) : Q] = 2n3m, so [K : Q] = 2s3t for some s, t ∈ Z≥0.

Conversely, suppose the normal closure K/Q of Q(z)/Q has dimension 2s3t over Q. The
Galois group G = Gal(K/Q) has order 2s3t. By Burnside’s p–q theorem, G is solvable. Thus,
G has a decomposition series

G = G1 BG2 BG3 B · · ·BGk = {e}
such that Gi/Gi+1 is of order 2 or 3. By the Galois correspondence, we obtain a sequence of
subfields of K such that

Q = F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ Fk = K

where Fi is the subfield of K fixed by Gi for 1 ≤ i ≤ k. In particular, [Fi+1 : Fi] = 2 or 3.
Any degree 2 extension is obtained by adjoining a square root: any α ∈ Ki+1 \Ki has a

minimal polynomial of degree 2; adjoin the square root of the discriminant to Ki to obtain
Ki+1. The extension Fi+1/Fi may be of degree 3 but may not be obtained by adjoining
a cube root. In this case, we can use the field decomposition as found in Theorem 3.6 to
replace the extension Fi ⊂ Fi+1 with the sequence Fi ⊂ L′i ⊂ L′′i ⊂ L′′′i with αi ∈ L′′′i such
that the sequence forms a (2, 3)-tower. Hence, z belongs to a (2, 3)-tower over Q and so is
constructible by Theorem 3.9. �

With this theorem, we can characterize the conic constructible regular n-gons, again due
to Videla [Vid97].

Theorem 3.11. The regular n-gon is conic constructible if and only if n = 2s3tp3p4 . . . pk
with s, t ≥ 0 where pi are distinct Pierpont primes: primes in the form 2u3v + 1 for integers
u, v ≥ 0.

Proof. Constructing a regular n-gon is equivalent to constructing ζn = e2πi/n. Let Fn be the
cyclotomic field of nth roots of unity. Fn/Q is a Galois extension and has degree φ(n). If
n = 2s3tpe33 · · · p

ek
k with s, t ≥ 1, then φ(n) = 2s3t−1pe3−13 (p3 − 1) · · · pek−1k (pk − 1). A similar

formula is obtained for s = 0 or t = 0. Theorem 3.10 tells us that ζn is conic constructible
if and only if Fn/Q (which is the normal closure of Q(ζn)/Q) has dimension 2a3b over Q,
which is just φ(n). Thus, we require that for i ≥ 3, ei = 1 and pi is in the form 2u3v + 1 for
integers u, v ≥ 0. �

4. Restricted Construction

What kinds of points can we construct if we are only allowed to use a compass or only
a straightedge? In this section, we apply restrictions to our straightedge and compass and
prove that we can still construct classically constructible points with the restricted tool set.

Theorem 4.1 (Mohr–Mascheroni). Any point constructible by a compass and ruler can be
constructed with just a compass.
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Proof. The proof is quite lengthy, so we leave the avid reader to read the following course
handout from the Illinois Math and Science Academy (link). �

What points can we construct using only a straightedge? Well, we can only form linear
equations using a straightedge, so we can never obtain any square roots. Thus, there is no
hope for getting constructible numbers from just a straightedge. However, it turns out that
once we have a single circle and its center, we can get all constructible numbers using only
a straightedge.

Theorem 4.2 (Poncelet–Steiner). Any line or point constructible by a compass and ruler
can be constructed with just a ruler, provided that a single circle and its center are given.

Proof. While we provide an outline of the proof here, for the complete proof, we direct
readers to the following course handout from the Illinois Math and Science Academy (link).

We prove the following results in order.

(1) Given a line
←→
AB, the midpoint C of the segment AB and a point P , we can draw

the unique line that passes through P and is parallel to
←→
AB. This requires the usage

of Ceva’s Theorem.
(2) We can use the given circle to construct three equidistant points on any given line.

(3) It directly follows that given a line
←→
AB and a point P , we can draw the unique line

that passes through P and is parallel to
←→
AB.

(4) We can translate line segments i.e., given a segment AB and point P , we can construct

a point Q such that
←→
AB is parallel to

←→
PQ and the lengths of the segments AB and

PQ are equal. This follows from our ability to draw the parallelogram defined by the
points A, B, and P to obtain the fourth vertex Q.

(5) Given a line
←→
AB and a point P , we can construct a line perpendicular to

←→
AB that

passes through P . We use the fact that an inscribed angle that subtends half of a
circle must be a right angle. We can force one of the rays of the angle to be parallel

to
←→
AB, which makes the other ray perpendicular to

←→
AB. We can now translate this

segment to the point P .

(6) Given a line
←→
AB and two points P and Q, we can construct a point R on the ray

−→
PQ

(pointing out from P ) such that the length of the segments PR and AB are equal.
The proof utilizes the fact that any two radii of a circle are of the some length.
Similar triangles obtained by three sets of parallel lines gives us our desired point R.

(7) Given segments of lengths a, b, and s, we can construct a segment of length a
b
s. For

an arbitrary pair of lines intersecting at point P , we can construct points A, B, and
S on the lines so that their distances to P are a, b, and s, respectively. Drawing the

line through A parallel to line
←→
BS and noting similar triangles gives the result.

(8) Given a segment of length a, we can construct a segment of length
√
a. With ap-

propriate re-scaling, this can be obtained using a similar diagram as covered in the
Abstract Algebra class.

The last two results prove that we can construct all classically constructible numbers. �

https://staff.imsa.edu/~fogel/ModGeo/PDF/32%20Mascheroni%20Constructions.pdf
https://staff.imsa.edu/~fogel/ModGeo/PDF/33%20Poncelet-Steiner%20Theorem.pdf
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5. Restricted Conic Constructions

What if we are initially given a fixed conic, but we can only make straightedge and compass
constructions? We cannot draw new conics, but we may be able to still take cube roots of
constructed numbers, thereby getting all conic constructible numbers.

A discovery in 2013 shows that this is true [BCJ+13].

Theorem 5.1. Any point constructible from conics can be constructed using a ruler and a
compass, together with a single fixed nondegenerate conic different from a circle.

We must first define two new notions of conic constructible points:

Definition 5.2. Let C be a non-degenerate conic in the field of constructible numbers.
Suppose that instead of starting of with just (0, 0) and (1, 0), we start with a set of points
P ⊂ C. We say that a point is C-constructible from P if it is obtained from the same process
as conic-constructible points except that the conics are confined to the fixed one, C.

Definition 5.3. We call an ellipse or a hyperbola of eccentricity e > 0 regular if it is given
by the equation

(1− e2)(x− a)2 + (y − b)2 = λ2

for some a, b, λ ∈ R. A parabola is regular if it is of the form

x = λ(y − a)2 + b

for some a, b, λ ∈ R. Essentially, conics are regular if their directrix is parallel to the
coordinate axes.

Definition 5.4. Let e > 0 be a constructible number. A point is e-constructible from P if
it is obtained by the same process as conic constructible points except that:

(1) the conics are confined to the the regular ones of eccentricity e, and
(2) the intersection of two conics, neither of which is a circle, are not adjoined.

When P = {0, 1}, we say that a point is C-constructible and e-constructible, respectively.
We have the following lemma:

Lemma 5.5. Every conic-constructible point is e-constructible for every constructible num-
ber e > 0.

Proof. Let z ∈ C be a conic-constructible point. From Theorem 3.9, z lies in a (2, 3)-tower
Q(α1, . . . , αn) where either α2

i or α3
i is contained in Q(α1, . . . , αi−1) for each i. Let e > 0

be a fixed constructible number. We will show that z is e-constructible by induction on
n. The base case is n = 0, but it is clear that every number in Q is e-constructible as
it is classically constructible. Now suppose that all the points in H = Q(α1, . . . , αn−1) is
e-constructible. if α2

n ∈ H, then αn is constructible from H from just using compass and
straightedge constructions.

Now suppose that α3
n = reiθ ∈ H. Let q = cos θ and let K be the field of constructible

numbers derived from 0, 1, r, and q. Our strategy is to find curves over K such that their
intersections give us 3

√
r and cos(θ/3) from which we can construct αn.

Consider the intersection of the following circle and conic:

x2 + y2 − rx− y = 0 and (1− e2)x2 + y2 − rx− (1− e2)y = 0.
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Subtracting the second equation from the first gives x2 = y. Substituting y with x2 in the
first equation then gives x4− rx = 0. Thus, the x-coordinate of the intersection points other
than the origin corresponds to the cube root of r.

By the triple-angle formula, cos(θ/3) is a real solution to the equation

4x3 − 3x− q = 0.

To obtain this equation, we intersect the following circle and conic:

x2 + y2 − q

4
x− 7

4
y = 0 and (1− e2)x2 + y2 − q

4
x−

(
7

4
− e2

)
y = 0.

Notice that the two conics we used are regular and have eccentricity e. We have obtained
cos(θ/3) and 3

√
r, and ultimately the point αn from those conics. We assumed that all the

points in H were e-constructible, in particular α3
n, r, and q. This shows that αn is an

e-constructible point. By induction, z is e-constructible. �

We prove Theorem 5.1 by showing that every e-constructible point is C-constructible.
Note that we can choose the value of e.

Proof. Let C be a nondegenerate conic with eccentricity e > 0. First, we establish a hierarchy
on the e-constructible points starting from the field of constructible points F0:

F0 ⊂ F1 ⊂ F2 ⊂ · · · .
Draw all of the regular conics of eccentricity e in F0. Let Qe

1 be the set of points by adjoining
to F0 all the intersection of lines and circles with any of the drawn regular conics. Let
F1 be the field of constructible points derived from Qe

1 (i.e. obtainable from compass and
straightedge constructions with the starting set Qe

1).
Define the rest of the fields in the sequence similarly, drawing regular conics of eccentricity

e from Fk and intersecting them with lines and circles to form Qe
k+1, then defining Fk+1 as

the field of constructible points derived from Qe
k+1. The set of e-constructible numbers is⋃∞

k=0 Fk.
Now, we prove that every e-constructible point is C-constructible by induction on k.

Clearly, F0 is C-constructible. Now, assume that all of the points in Fk are C-constructible.
Take any point z ∈ Fk+1 \ Fk obtained by intersecting a circle Rk and a regular conic Ck of
eccentricity e, both in Fk.

Note that Ck and C both have eccentricity e. By Lemma 3.4, C can be rotated an angle
θ so that C is regular. Moreover, we can scale and translate the rotated C to send it to Ck.
The scaling factor λ > 0 and translation factor a+ bi both lie in Fk. Thus, we can explicitly
define a bijective function f : C→ C that sends C to Ck, solely using the numbers in Fk. In
other words, a conic in Fk remains as a conic in Fk after f is applied.

The intersection point z ∈ Rk ∩ Ck can be obtained as follows:

(1) Apply f−1 to Rk to get R′k.
(2) Intersect R′k with C to get the intersection point z′

(3) Apply f to z′ to obtain z.

We can verify that

f(C ∩R′k) = f(f−1(Ck) ∩ f−1(Rk)) = Ck ∩Rk = z.

We assumed that all of the points in Fk are C-constructible, so the the point z′ ∈ R′k ∩C is
a C-constructible point because R′k is a circle in Fk. Finally, z is C-constructible.
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Every point in Fk+1 is C-constructible from Fk. This completes the proof. �

References

[BCJ+13] Seungjin Baek, Insong Choe, Yoonho Jung, Dongwook Lee, and Junggyo Seo. Constructions by
ruler and compass, together with a fixed conic. Bulletin of the Australian Mathematical Society,
88(3):473–478, 2013.

[GS09] Aliska Gibbins and Lawrence Smolinsky. Geometric constructions with ellipses. The Mathematical
Intelligencer, 31(1):57–62, 2009.

[Vid97] Carlos R Videla. On points constructible from conics. Mathematical Intelligencer, 19(2):53–57,
1997.


	1. Introduction
	2. Constructible Numbers
	3. Drawing with Conics
	4. Restricted Construction
	5. Restricted Conic Constructions
	References

