
Representation Theory

Sushanth Sathish Kumar

June 7, 2020

This article, we’ll discuss the representations of groups. The correct way to introduce
the representation of a group is through a k-algebra. Many of the theorems and definitions
for k-algebras are analogous to those of groups. We assume familiarity with standard
linear algebra topics such as tensors, direct sums and trace. Unless otherwise stated, k
refers to a field, V a vector space, A an algebra and G a group.

§1 Motivation

In group theory, we have Cayley’s theorem, which tells us that given a finite group G,
there is an injective map G→ Sn, where n = |G|. However, the symmetric group is pretty
weird and difficult to work with. However, we would still like to be able to concretely
work with groups and understand their properties through a ”larger” group that contains
all of them. It seems Sn is the only ”larger” group we can use until we realize that we
can actually construct a homomorphism from Sn to GLn(R). Here is the representation
for S3.

()→

1 0 0
0 1 0
0 0 1

 (12)→

0 1 0
1 0 0
0 0 1

 (23)→

1 0 0
0 0 1
0 1 0


(31)→

0 0 1
0 1 0
1 0 0

 (123)→

0 1 0
0 0 1
1 0 0

 (132)→

0 0 1
1 0 0
0 1 0


We can even generalize this to arbitrary n. Why should we care about this? It tells us that
any subgroup of Sn can also be expressed as elements of GLn(R). But by Cayley’s theorem
that means every group can be expressed as matrices. This is the goal of representation
theory. Make all the group elements into a matrix so that we can concretely understand
them through linear algebra.

§2 Representations of k-Algebras and Groups

The natural setting for representation theory is a k-algebra. We want to express the
elements of a k-algebra as matrices, and by doing so we’ll be able to do the same to G for
free. The most important thing to note is that matrices are really just linear operators
on a vector space! So a representation should actually be thought of as a map from a
k-algebra to a set of functions.

Definition 2.1. A k-algebra A is a k-vector space, equipped with associative multiplica-
tion · : A×A→ A satisfying the following axioms

• a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a
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• a · (λb) = (λa) · b = λ · (ab) for all λ ∈ k

• There exists an element 1A, called the identity, such that 1Aa = a1A = a for all
a ∈ A

Alternatively, A can be viewed as a possibly non-commutative ring with an embedding
k ↪→ A. Specifically, the image of k in A is {k1A : k ∈ A}.

With either defintion, The set of polynomials k[x] form a k-algebra with function
composition, the identity being x. If V is a k-vector space then Mat(V ), the set of linear
maps V → V , also from a k-algebra under function composition.

Example 2.2 (Group Algebra)

For a group G, we define the group algebra

k[G] =

{ n∑
i=1

cigi : ci ∈ k, g1 ∈ G
}
.

In other words, k[G] is a k-vector space, with the basis elements provided by G.
Multiplication works as expected:

(ag + bh)2 = agag + agbh+ bhag + bhbh = a2g2 + ab(gh+ hg) + b2h2,

where a, b ∈ k and g, h ∈ G.

The group algebra is one of the most useful k-algebras since it adapts the notion of a
group to ”fit” a k-algebra which means we can use k-algebra theorems on groups.

Definition 2.3. Given two k-algebras A and B, we define a homomorphism F : A→ B
such that

• F is a linear map when A and B are viewed as vector spaces.

• F (ab) = F (a)F (b) for all a, b ∈ A, and F (1A) = 1B.

Now we are ready to define what a representation of an algebra is.

Definition 2.4. A representation of a k-algebra A is a pair (V, ρ), where V is a k-vector
space and ρ : A→ Mat(V ) defines a k-algebra homomorphism.

From this, we can prove that ρ fixes k. Indeed, for any scalar λ, since ρ is linear, we
have ρ(λ) = λρ(1A) = λI, where I is the identity in Mat(V ). The other way to think
about a representation is an action of A on V .

Definition 2.5. Alternatively, a representation of a k-algebra is an action · : A×V → V
of A on a k-vector space V satisfying the following axioms

• (a+ b) · v = a · v + b · v, a · (v + w) = a · v + a · w, and a · (b · v) = (ab) · v for all
a, b ∈ A and v, w ∈ V .

• λ · v = λv for all λ ∈ k.

In particular, the action is given by a · v = ρ(a)(v), where ρ is the homomorphism
mentioned earlier. In discussing representations, the latter definition is used more often,
and ρ is often omitted.
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Example 2.6 (Representation into Mat(V ))

Let (V, ρ) be a representation of A. Then, Mat(V ) is also a representation of A, with
the action given by a · T = ρ(a) ◦ T, where ◦ represents function composition. This
satisfies all the conditions:

• a · (b · T ) = a · (ρ(b) ◦ T ) = ρ(a) ◦ ρ(b) ◦ T = ρ(ab) ◦ T = (ab) · T

• a · (T + S) = ρ(a) ◦ (T + S) = ρ(a) ◦ T + ρ(a) ◦ S = a · T + a · S

• (a+ b) · T = ρ(a+ b) ◦ T = (ρ(a) + ρ(b)) ◦ T = a · T + b · T

• λ · T = ρ(λ) ◦ T = λI ◦ T = λT,

where I denotes the multiplicative identity of Mat(V ).

Example 2.7 (Defining Representations of G)

In this example, we will motivate the definition for a representation of a group. Let
V be a representation of k[G] and consider the k-algebra homomorphism F : k[G]→
Mat(V ).

Consider what F does to the elements of G. Since the elements of G form a basis,
where we send one element of G does not have an effect on where we send another.
Thus, the fact that F is linear is irrelevant. Note that F (gh) = F (g)F (h) for all
g, h ∈ G. Therefore, the image of G under F is a group, since F restricted to G
defines a group homomorphism. But that implies that F (g) is invertible for all g!
Hence, F really just defines a group homorphism G → GL(V ). Conversely, given
a homomorphism G→ GL(V ), we can extend it to a k-algebra homomorphism of
k[G] through linearity.

The above example yields the following natural definiton.

Definition 2.8. A representation of a group G is a pair (V, ρ) such that ρ : G→ GL(V )
defines a group homomorphism. Alternatively, a representation of G is an action of G on
a vector space V . Conventionally, V is usually a vector space over C.

Example 2.9 (Representation of D4)

Consider a map φ : D4 → GL2(R). As usual, let r and s denote rotation and
reflection in D4. We claim that

φ(r) =

[
0 −1
1 0

]
and φ(s) =

[
0 −1
−1 0

]
.

provides an embedding D4 → GL2(R). Indeed, by straightforward multiplication,
we can verify that φ(r)4 = φ(s)2 = 1, and φ(r)φ(s) = φ(s)φ(r)−1. Hence, the group
presentation is preserved, and so the image of D4 under φ is isomorphic to D4. Thus,
φ constitutes a representation of D4.

Finally, given two representations V and W , we are able to combine them to make a
”larger” representation of A.
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Definition 2.10. If (V, ρV ) and (W,ρW ) are two representations of a k-algebra A, then
V ⊕W is also a representation with the action given by a · (v, w) = (a · v, a · w). If V
and W are subspaces of a larger space U , then the direct sum is addition, and the action
is instead defined as a · (v + w) = a · v + a · w. Naturally, we can extend this definition
for groups as well.

In fact, with a little bit of linear algebra, we can say that

ρ(a) =

[
ρV (a) 0

0 ρW (a)

]
Indeed, this just follows from putting the coefficients of V (after expressing it in terms of
the basis) on top and the coefficients of W on the bottom.

Example 2.11 (Representation of D4 in R4)

We can take our earlier representation for D4 and represent it in R4 ∼= R2⊕R2, as
well. From the above analysis, we can consider the map φ : D4 → GL4(R) given by,

φ(r) =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 and φ(s) =


0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1

 .
This is really just a ”copy” of our earlier representation, so in a sense this is

”reducible”. That is, given this, we can figure out what the representations over R2

would look like. More on this in the next section.

Given two representations of an algebra, we have a direct sum operation, which makes
it ”larger”. In the next section, we will aim to do the exact opposite of this. Given a
representation, we will want to break it down into smaller ones, much like breaking a
number down into its prime factors.

§3 Irreps and Schur’s Lemma

For a group G, we have the notion of a subgroup, which formalizes the fact that sometimes
a smaller subset of G can also form a group. For abelian groups, we were even able to
characterize the parent group G from its subgroups. We hope to do something similar
with representations.

Definition 3.1. Let W be a subspace of a representation V of A. We say that W is a
subrepresentation if a · w ∈ W for every a ∈ A and w ∈ W . In other words, the action
shuffles the elements of W .

Definition 3.2. A representation V is said to be an irrep (irreducible representation) if
it has no nontrivial subrepresentations. V is said to be indecomposable if there are no
nontrivial subrepresentations U and W such that V = U ⊕W .

Definition 3.3. A representation V is said to be completely reducible if it can be broken
down into a direct sum of irreducible subrepresentations. An algebra A is said to be
semisimple if all of its representations are completely reducible.

Clearly, if a representation is irreducible it is automatically indecomposable. Unfor-
tunately the converse of this turns out to be false: there are representations that are
indecomposable but not irreducible. However, for the case of semisimple algebras and k[G]
this turns out to be true, as we will see in the next section.
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Example 3.4 (Irreducible 6= Indecomposable)

Let V = R⊕2 be a representation of A = R[x]. The homomorphism ρ is determined
by where it sends x and 1. Suppose

ρ(x) =

[
1 1
0 1

]
.

All subrepresentations of V are 1-dimensional. Let W be one such subrepresentation.
So suppose (a, b) ∈ W . Then W = {(ca, cb) : c ∈ R}. Now consider how x acts
on (a, b). We have x · (a, b) = ρ(x)(a, b) = (a + b, b). But, we know that if W is a
subrepresentation, there exists a constant c such that (ca, cb) = (a+ b, b). So either,
c = 1 or b = 0. But both cases lead to b = 0, so the only subrepresentation of V is
W = {(t, 0) : t ∈ R}. Hence, V is not an irrep, but is indecomposable.

Going back to our second representation of D4, we see that it has subrepresentations
given by {(a, b, 0, 0) : a, b ∈ R} and {(0, 0, c, d) : c, d ∈ R}. Therefore, it must be
decomposable and hence reducible.

To figure out if two groups were ”the same” we invented the homomorphism, and
declared that they would be equivalent if the homomorphism was also a bijection. We
want to be able to do something similar with representations.

Definition 3.5. Let V and W be two representations of A. A linear map T : V →W is
said to be a morphism if

T (a · v) = a · T (v)

for all a ∈ A and v ∈ V . The morphism is said to be an isomorphism if T is bijective.
We also define the subspaces kerT = {v ∈ V : T (v) = 0} and imT = {T (v) : v ∈ V }.
Finally, we let Homrep(V,W ) denote the set of all morphisms from V to W . It forms a
k-algebra with function composition.

Example 3.6 (Mat(V ) ∼= V ⊕ dimV )

Let d be the dimension of V , and let β1, ..., βd be a basis for V . Mat(V ) contains
linear operators which are determined by where they send the basis elements. So,
pick T ∈ Mat(V ) and consider the map S : Mat(V ) → V ⊕d given by S(T ) =
(T (β1), ..., T (βr)).

The map is obviously bijective since there’s no restriction on where you can send
the basis elements. To show its a morphism, we see

S(a · T ) = S(ρ(a) ◦ T ) = (ρ(a)(T (β1)), ..., ρ(a)(T (βr))) = ρ(a) ◦ S(T ) = a · S(T ),

so we are done.

From your intuition in group theory, you may have already guessed the following
theorem.

Theorem 3.7

Let A be a k-algebra and let V and W be representations of A. If T is a morphism
from V to W , kerT is a subrepresentation of V and imT is a subrepresentation of
W .
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Proof. Select v ∈ kerT . Then, T (a · v) = a · T (v) = 0, so kerT remains invariant under
the action of A. The proof for imT is essentially the same.

From this, we more or less get Schur’s Lemma for free.

Lemma 3.8 (Schur’s Lemma)

Let V and B be representations of a k-algebra A. If T : V → W is a nonzero
morphism.

• If V is an irrep, then T is injective.

• If W is an irrep, then T is surjective.

• If both are irreps, then T is an isomorphism.

In the case that k is algebraically closed, we can actually charactarize every single
morphism T : V → V .

Lemma 3.9 (Schur’s Lemma + Algebraically closed)

Suppose k is algebraically closed. Let V be a representation of k-algebra A, and
T : V → V be a morphism. Then there is a λ ∈ k such that T (v) = λv.

Proof. First, since k is algebraically closed, it had an eigenvalue λ. Consider the map
F = T − λI, where I is the identity matrix. Suppose F is nonzero. The kernel of this
is clearly non-trivial since there is an eigenvalue. But by Schur’s lemma, since V is an
irrep, the kernel must be trivial, contradiction.

Example 3.10 (Characterizing Homrep(V, V ⊕m) for irreps V )

First, note that Lemma 3.9 gives Homrep(V, V ) ∼= k. We will prove that

Homrep(V, V ⊕m) ∼= k⊕m

provided k is algebraically closed. But to specify a morphism T : V → V ⊕m, we just
need to specify m different morphisms V → V (one for each component of V ⊕m).
But Lemma 3.9 tells us that each of these morphisms is just multiplication by scalar.
Therefore, the only morphisms V → V ⊕m are of the form T (v) = (c1v, ..., cmv).
Naturally, this is isomorphic to k⊕m.

§4 Density and Maschke

Now, we are ready to introduce the Density Theorem, which we state without proof.
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Theorem 4.1 (Jacobson Density Theorem)

If V1, V2, ..., Vr are non-isomorphic finite dimensional representations of A, then there
is a surjective map

ρ : A→
r⊕
i=1

Mat(Vi),

provided k is algebraically closed.

Notice the relation to the Chinese Remainder Theorem. If (M1, ...,Mr) was a tuple of
pairwise relatively prime integers, and we picked a tuple (q1, ..., qr) ∈ Z/M1Z × · · · ×
Z/MrZ, then we can find an integer N ∈ Z/(M1 · · ·MrZ) such that N = qi in Z/MiZ.

Similarly, if I give you a tuple of the form (T1, ..., Tr), where Ti ∈ Mat(Vi) you can find
an a such that (ρ1(a), ..., ρr(a)) = (T1, ..., Tr).

The Density Theorem helps us put bounds on the number of irreps a k-algebra can
have. More specifically,

Lemma 4.2

The number of irreps of A cannot exceed dimA.

Proof. Suppose there are r such representations, labeled V1, ..., Vr. First, we note that
Mat(Vi) ∼= V ⊕ dimVi

i as representations of A. Therefore, by the Density Theorem

dimA ≥
r∑
i=1

(dimVi)
2 ≥ r

Of course, we are also interested in when equality occurs. For this, we need the characta-
rization theorem for semisimple algebras, which we state without proof.

Theorem 4.3 (Semisimple Algebras)

A is semisimple if and only if A ∼=
⊕

i Matdi(k), where Matdi(k) consists of the
square di × di matrices with entries in k.

Combined with Lemma 3.2, we obtain the following theorem.

Theorem 4.4

A is semisimple if and only if
∑

i(dimVi)
2 = dimA.

Proof. By the Density Theorem, equality can only hold when the map ρ : A →⊕r
i=1 Mat(Vi) is bijective. Hence, equality holds if and only if A ∼=

⊕r
i=1 Mat(Vi) ∼=⊕r

i=1 Matdi(k), where di is the dimension of Vi. But this implies A is semisimple.

Now we are ready to state a fundamental connection between representations of groups
and aglebras.
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Theorem 4.5 (Maschke’s Theorem)

Let G be a finite group, and k a field whose characteristic does not divide |G|. The
algebra k[G] is semisimple.

Proof. To show that it is semisimple, we need to show that given any reducible finite
dimensional representation V can decompose it into two subrepresentations. Let W be a
non-trivial subrepresentation of V . We claim that there is a U such that V = U ⊕W .

Let {w1, ..., wp} be a basis for W . We can extend this to a basis for V , so let
{w1, ..., wp, u1, ..., uq} be a basis for V . Finally, let U be the vector space spanned by
the ui’s. It follows that V = U ⊕W , so all we need to do now is show U is also a
subrepresentation.

Consider the projection π : V → W given by π(u + w) = w, where we first express
every v uniquely as u+ w for u ∈ U and w ∈W . The trick is to consider the following
map

P (v) =
1

|G|
∑
g∈G

g · π(g−1 · v).

The map has the following properties:

• P (w) = w for all w ∈W

• P (v) ∈W for all v ∈ V

• P is a morphism.

To prove the first property, note that since W is a subrepresentation, we have g−1 ·w ∈W ,
so P (w) = 1

|G|
∑

g∈G g(g−1 · w) = 1
|G|
∑

g∈Gw = w.

The second property follows from the fact that π(g−1 · v) ∈ W , so in particular
g · π(g−1 · v) is always an element of W . Therefore, P (v) is merely the sum of elements
in W , multiplied by a scalar, so it must lie in W .

To show P is a morphism on k[G], we only need to show that it is a morphism on the
basis, i.e. G. So pick an element h ∈ G, and note

h−1 · P (h · v) =
1

|G|
∑
g∈G

h−1g · π(g−1h · v) =
1

|G|
∑
k∈G

k · π(k−1 · v) = P (v).

where the last step follows from noting as g goes through G, k = h−1g also goes through
G. Therefore, multiplying both sides by h, we see P is a morphism.

From the properties mentioned above, we see that P (P (v)) = v for all v ∈ V , i.e. P is
idempotent. Hence, V = kerP ⊕ imT = kerP ⊕W . Thus, V is decomposable, and we
are done.

§5 Everyone Loves Characters

Every possible representation can be expressed as a matrix. Thus, it makes sense to try
and understand linear algebra properties of these maps. A natural candidate for this is
trace. Surprisingly this turns out to be a great choice since as we will see shortly, it ties
in naturally with groups.
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§5.1 Characters I: k-Algebra Perspective

There isn’t a whole lot to say here, and all the properties listed below carry over to
groups as well.

Definition 5.1. Let A be a k-algebra, and V a representation. Then we define the
character χV : A→ k by χV (a) = Tr(ρ(a)).

We have the following basic results about trace.

Theorem 5.2

Let A be an algebra, and suppose V and W are two different representations.

• χV (1A) = dimV

• χV⊕W = χV + χW

• χV (ab) = χV (ba) for all a, b ∈ A

• χV is a linear map.

Proof. We have χV (1A) = Tr(ρ(1A)) = Tr(I), where I is the identity on Mat(V ). So it
follows that χV (1A) = dimA.

We remarked earlier that the homomorphism A→ Mat(V ⊕W ) is given by the matrix

ρ(a) =

[
ρV (a) 0

0 ρW (a)

]
. The second part is direct from this.

The third part follows from noting that Tr(ST ) = Tr(TS) for any matrices T and S.
The last part is immediate since trace itself is linear.

Continuing in the spirit of our earlier examples, let’s compute the trace of each element
in D4!

Example 5.3 (Characters of D4)

We’ll compute the character of our first representation of D4 in 2× 2 matrices.

g 1 r, r3 r2 s, sr2 sr, sr3

χ(g) 2 0 −2 0 0

We’ve conveniently broken down the elements of D4 into their conjugacy classes. As
you may have noticed the character seems to be the same for each element of a given
conjugacy class. This is no coincidence, as we will see in the next section.

§5.2 Characters II: Group perspective

From here on out, we will set k = C, and we will work on specializing all of the above
results for groups. Characters for groups are defined in exactly the same way, so I won’t
bother redefining it.

Definition 5.4. Class(G) is the set of conjugacy classes in G.

Why would we want to consider conjugacy classes of G? Well, Theorem 5.2 shows that
χ(ghg−1) = χ(gg−1h) = χ(h). So χ treats all elements of a conjugacy class with equal
disrespect! In particular, we can think of χ as a function from Class(G) → C, since χ
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only depends on which conjugacy class you choose. Furthermore, it turns out that there
are exactly |Class(G)| irreps of G (see [1] for proof).

Definition 5.5. Let G be a group with representations V and W . Then the tensor
product V ⊗W can be made into a representation of G by imposing the action g ·(v⊗w) =
(g · v)⊗ (g · w).

You might wonder why we can’t define the same for a k-algebra. The reason is that A
has additional distributive structure that G doesn’t. More specifically, we can distribute
over elements of A like (a+ b) · (v⊗w) = a · (v⊗w) + b · (v⊗w), which isn’t compatible
with the group-theoretic definition of tensor representation. To see this, we can simply
take a = b = 1A.

Definition 5.6. Let G be a group with representation V , and consider its dual space
V ∨. We can make V ∨ into a representation by taking f ∈ V ∨ and sending it to g · f ,
where g · f in V ∨ is the function providing the map v → f(g−1 · v).

This definition also fails in a k-algebra, since we do not require all elements to have
inverses.

Definition 5.7. We define CClass(G) to be the set of functions Class(G)→ C treated as
a C-vector space. We make this into an inner product space by definining

〈f, h〉 =
1

|G|
∑
g∈G

f(g)h(g)

The reason for defining this is the following theorem:

Theorem 5.8

If V and W are representations of G, then

〈χV , χW 〉 = dim Homrep(W,V ).

Moreover, the characters of the irreps of G form an orthonormal basis.

The proof can be found in [1]. Additionally, here are some properties of characters that
apply solely to groups.

Theorem 5.9

If V and W are representations of G, we have

• χV⊗W (g) = χV (g)χW (g)

• χV ∨(g) = χV (g)

Proof. The first property falls out from the well known trace identity Tr(T ⊗ S) =
Tr(T ) Tr(S). For concreteness, we spell it out

χV (g)χW (g) = Tr(ρV (g)) Tr(ρW (g)) = Tr(ρV (g)⊗ ρW (g)) = Tr(ρV⊗W (g)) = χV⊗W (g).

The proof of the second theorem is omitted, but can be found in [1].

From Theorem 5.8, we can actually derive a criterion for a representation to be an
irrep.
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Theorem 5.10

If V is an irrep of a group G over C, then 〈χV , χV 〉 = 1.

Proof. In the section 3, we derived that Homrep(V, V ) ∼= C. Hence, dim Homrep(V, V ) = 1,
and it follows that 〈χV , χV 〉 = 1.

§5.3 Character Tables

For aesthetic purposes, we can represent all of our information in a cute table.

Example 5.11 (Character Table for D3)

Let us construct the character table for D3. There are 3 conjugacy classes, and
hence 3 irreps. Suppose these irreps have dimension d1, d2 and d3. Then, since C[G]
is semisimple, we have

d21 + d22 + d23 = 6 =⇒ {d1, d2, d2} = {1, 1, 2}.

Here are the resulting representations:

• Ctriv: The trivial representations that sends each element of D3 to [1] (the one
dimensional identity matrix).

• Csgn: The sign representations that sends r → [1] and s→ [−1].

• V : The two dimensional representations given by r →
[
ω 0
0 ω2

]
and s→

[
0 1
1 0

]
,

where ω = e2πi/3.

Here is the character table:

D3 1 r, r2 srj

Ctriv 1 1 1
Csgn 1 1 -1
V 2 -1 0

At the top, we have the conjugacy classes, and the numbers inside the chart are the
values of the characters on those classes.

We can verify Theorem 5.8 for this special case. Indeed,

〈Csgn, V 〉 =
1

6
(1 · (1)(2) + 2 · (1)(−1) + 3 · (−1)(0)) = 0

〈V, V 〉 =
1

6
(1 · (2)(2) + 2 · (−1)(−1) + 3(0)(0)) = 1,

as expected.
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Example 5.12 (Character Table for D4)

As we saw in the earlier example, D4 has 5 conjugacy classes. Following the same
logic as before, we deduce that there are four irreps of dimensions 1 and one irrep of
dimension 2. The irrep of dimension two is shown in Example 2.9.

It remains to find all the 1-dimensional irreps. Since they are one dimensional, we
can simply think of them as homomorphism D4 → C×. Suppose r 7→ a and s 7→ b
for some a, b ∈ C×. Then, we know that since s2 = 1, we have b = ±1. Next, since
rs = sr−1, we know that a2 = 1 (recall C× is abelian).

However, we know that there are 4 irreps. Hence, each choice of a and b provides
a valid irrep. With this information, we can easily construct the character table.

D4 1 r, r3 r2 s, sr2 sr, sr3

V1(1, 1) 1 1 1 1 1

V1(1,−1) 1 1 1 −1 −1

V3(−1, 1) 1 −1 1 1 −1

V4(−1,−1) 1 1 −1 −1 1

W 2 0 −2 0 0

The ordered pairs next to the Vi denote the pair (a, b) used to construct the repre-
sentation.
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