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Introduction

The purpose of this paper is to acquaint the reader with the fundamental con-
cepts of category theory. This paper is aimed at those who have are already
accustomed with various concepts in abstract algebra, and groups in particular.
However, definitions of these abstract structures are also provided for complete-
ness.

The paper will be light on theorems, as the approach of this paper will be to
define concepts in category theory and then demonstrate their applications to
various other fields. Through this paper, we aim to give the reader a taste of
how category theory really is a good generalization of many other fields.

Category Theory can be thought of as the study of the most general abstract
structures. Almost every structure in every branch of mathematics may be
considered to be a category, including (but not limited to): Groups, Monoids,
Vector Spaces, Sets, Ordered Sets, Graphs, Topological Spaces, and even Cate-
gories themselves. As a result, many results in category theory have applications
to other branches of mathematics.

But aside from their applications, categories themselves are interesting objects
to work with. We hope that by reading this paper, the reader will be inspired
by both the beauty and the complexity of these abstract objects.

Categories

Categories can be thought of as the biggest generalization of abstract structures.
There is some collection of things, called objects; some way to move from a thing
to another thing, called morphisms; a way to put together multiple movements,
called composition, and some way to get from each thing to itself, called identity.

We categories more formally as follows.

Definition. category. A category C consists of
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• A collection of objects ob(C).

• A collection of morphisms hom(C). Each morphism f ∈ hom(C) maps
from a source object a ∈ ob(C) to a target object b ∈ ob(C), notated
f : a→ b.

• A composition operation on morphisms ◦. For elements a, b, c ∈ ob(C),
given a morphism f : a → b and another morphism g : b → c, then the
composition operation satisfies f ◦ g : a→ c.

• An identity morphism ida for each object a ∈ ob(C). The identity map
sends the object to itself, ida : a → a. If the object is implied then the
identity is simply denoted id.

For morphisms, it will be useful to define the following notations:

Definition. src, tgt. Let f : A→ B be a morphism in a category C. Define:

src(f) = A

tgt(f) = B

We have now defined categories as a collection of things, but the thing doesn’t
have any structure yet. So we define some axioms on the categories to give it
structure.

Definition (cont’d). category axioms. All categories C must also satisfy:

• Uniqueness: f : a→ b, f : a′ → b′ ⇒ a = a′, b = b′.

• Associativity: f ◦ (g ◦ h) = (f ◦ g) ◦ h

• Identity Composition: f ◦ id = id ◦ f = f

Example. Sets. A classical example of a category is the category of sets,
denoted Set. We define each part of the category as follows:

The category is the category of sets, C = Set

• The objects are sets, a ∈ ob(Set)⇒ a = S

• The morphisms are total functions on the sets (that is, functions which
are defined on each element in the set), f ∈ hom(Set)⇒ f : S → T

• The composition operation is the standard composition operation for total
functions on sets, f : S → T, g : T → U ⇒ g ◦ f : S → U where
g ◦ f(x) = g(f(x)) for x ∈ S
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• The identity morphism for each object is the identity operation for sets,
idS = id : S → S, where id(x) = x for x ∈ S

Additionally, we should verify that the axioms of categories hold for the category
Set.

• Uniqueness: total functions on sets are unique in the sense that they are
only defined one source set, and they always take that source set to the
same target set

• Associativity: total functions on sets are associative under the composition
operation

• Identity Composition: composing a total function between sets with the
identity function on either set (source or target) will preserve the original
function

Example. Groups. Groups also form a category, denoted Grp. We define each
part of this category like so:

The category is the category of groups, C = Grp

• The objects are groups, a ∈ ob(Grp)⇒ a = G

• The morphisms are homomorphisms between the groups (essentially, maps
which preserve the operational structure of the groups), f ∈ hom(Grp)⇒
f : G→ H

• The composition operation is the standard composition operation for ho-
momorphisms on groups, f : G → H, g : H → I ⇒ g ◦ f : G → I where
g ◦ f(x) = g(f(x)) for x ∈ G

• The identity morphism for each object is the identity homomorphism for
groups, idG = id : G→ G, where id(x) = x for x ∈ G

The verification that the above definition of the category Grp also obeys the
axioms of categories is similar to the verification performed for the category Set,
and is left as an exercise for the reader.

There’s also another cool way to create a category using groups. Rather than
letting our category represent all groups, we can actually create a one-element
category from a particular group. Here’s how.

The category is the one-element category for a group, C = Grp∗.

• There is only one object. This object represents the group G, but it
doesn’t really matter what we call it. So let’s denote it 4 ∈ ob(Grp∗)
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• The morphisms are all morphisms from 4 to itself. We let each element
of the group g ∈ G represent a morphism from 4 to itself, g ∈ hom(Grp∗)

• Out of all the morphisms from 4 to itself, one of them should be the
identity morphism. We let the identity element e of G represent this
identity morphism, id4 = e

• We define composition between morphisms as multiplication between the
corresponding elements of the group. In other words, if g1 : 4 → 4
and g2 : 4 → 4 are morphisms g1, g2 ∈ hom(Grp∗), and they are also
elements of the group g1, g2 ∈ G, then we define g2 ◦g1 = g2 ∗g1 : 4→ 4,
where ∗ is the multiplication operation of the group.

The verification that this definition of the category of a group indeed satisfies the
category axioms should be informative in understanding the nature of categories,
and is left as an exercise for the reader.

Example. Graphs. A more novel example of a category is the category of
directed multigraphs, denoted Grph. This category is defined as such:

The category is the category of a directed multigraphs (graphs where each edge
has a direction, and there may be multiple edges connecting the same two
vertices), C = Grph. It will also be helpful to define the graph G = (V,E),
where G is a directed multigraph, V is the set of vertices in the graph, and E
is the set of edges in the graph

• The objects are vertices in G, a ∈ ob(Grph)⇒ a = v for v ∈ V

• The morphisms are directed edges between the vertices, f ∈ hom(Grph)⇒
f = e for e ∈ E. Also note that the source and the target of morphism f
correspond to the source and target vertices of the direct edge

• The composition operation is the path adjoining operator for directed
edges, e1 : v1 → v2, e2 : v2 → v3 ⇒ e2 ◦ e1 : v1 → v3

• The identity morphism for each object is the self-loop at each vertex,
idv = id : v → v where id is the directed edge from v to itself. For the
types of graphs in this category, each vertex must have a self-loop

We will verify that the category Grph obeys the axioms of categories.

• Uniqueness: edges are only defined between one source vertex and one
target vertex

• Associativity: when composing directed edges to create a larger directed
path, the order in which the edges are combined does not matter
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• Identity Composition: when moving along a directed edge, going around
a self-loop at either the source or the target vertex does not change the
original path of the edge

In addition to the examples mentioned above, there are many other types of
categories, such as the category of monoids (groups without inverses) Mon,
the category of vector spaces over a common field K V ectK , the category of
topological spaces Top, and even the category of small categories Cat (more on
this later). It just goes to show how general of a structure categories are!

Categories are a cool abstract generalization of various structures in mathe-
matics, but by themselves they aren’t too useful. We want to be able to say
something about them, and some statements that we make about general cat-
egories might also translate to theorems about more specific fields of math.
Like with most abstract algebra courses (such as group theory), we begin by
exploring the notion of nested categories (categories within categories).

Definition. subcategory. A subcategory D of category C is a category such
that

• Subset of Objects: ob(D) ⊂ ob(C)

• Subset of Morphisms: hom(D) ⊂ hom(C)

• Identity Morphisms Exist: ∀d ∈ ob(D), idd ∈ hom(D)

• Closedness of Morphisms: ∀f ∈ hom(D), src(f), tgt(f) ∈ ob(D)

Notice that the above definition of subcategory doesn’t actually explicitly state
that D is a category. However, these are in fact equivalent.

Theorem. Using the above definition of subcategory, D is a subcategory of C
if and only if D is a category with objects and morphisms inherited from C.

Proof. The proof involves verifying that all of the properties and axioms of
categories hold for the subcategory D, and is left to the reader as an exercise.

Example. subcategories of Grph. When the category is Grph, and the entire
category represents one big graph G, the subcategories are closed subgraphs
G′ of G. In other words, if G = (V,E), then a subgraph G′ = (V ′, E′) has
some subset of vertices of the original graph V ′ ⊂ V , and the edges are a
subset of the edges in the original restricted to the vertices of the subgraph,
e′ ∈ E′ ⇒ e′ = (v′1, v

′
2) where v′1, v

′
2 ∈ V ′. The notation e = (v1, v2) is used to

denote an directed edge from vertex v1 to vertex v2.
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The reader may work out the analogues of subcategories for the categories Set
and Grp.

The notion of subcategories will come in handy in the future. But with just
categories and subcategories, we still can’t say anything particularly meaningful
about categories. Once again like with many fields of abstract algebra (such as
group theory), we explore structure-preserving maps between categories. In
category theory, these maps are known as functors.

Functors

Functors are maps between categories which preserve their categorical structure.
However, since categories consist of a lot of objects and operations, we should be
more specific about what the functors are actually doing within the categories.
Their formal definition is the following.

Definition. functor. A functor F between categories C and D, notated F :
C → D, is a map which does the following:

• F sends objects in C to objects in D: F (c) = d, where c ∈ ob(C) and
d ∈ ob(D)

• F sends morphisms in C to morphisms in D: F (f) = g, where f ∈ hom(C)
and g ∈ hom(D)

So now we know which things the functors are acting on, but we also said that
functors should preserve categorical structure. What we mean by that is that
functors should also satisfy the following axioms:

Definition (cont’d). functor axioms. All functors F must also satisfy:

• F sends identity morphisms to identity morphisms: if c ∈ ob(C) and d =
F (c) ∈ ob(D), then F (idc) = idd, where idc ∈ hom(C) and idd ∈ hom(D)

• F sends the composition operation to the composition operation: if f1, f2 ∈
hom(C) and g1 = F (f1), g2 = F (f2) ∈ hom(D), then F (f1 ◦ f2) = g1 ◦ g2,
where the former composition is composition in C, while the second com-
position is composition in D

Just like in other fields of abstract algebra, when we consider functors between
categories, we also like to consider functors from categories to themselves. These
are known as endofunctors.

Definition. endofunctor. A functor F from a category C to itself, F : C → C,
is called an endofunctor.
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Functors between categories is already a pretty abstract concept to wrap our
heads around, so let’s see some concrete examples of what functors between
categories can look like.

Example. functors between Grp∗. Suppose we have two groups G and H, and
we build categories Grp∗G and Grp∗H out of both of them (remember, these are
the one-element categories we defined earlier). We would like to define a functor
between them, F : Grp∗G → Grp∗H .

Since these are one-element categories, let ob(Grp∗G) = {4}, and let ob(Grp∗H) =
{�}. The first thing that functor F should do is that it should map objects
in Grp∗G to objects in Grp∗H . Since there is only one object in either of these
groups, functor F satisfies

F (4) = �

In addition to mapping objects to objects, functor F should also map morphisms
to morphisms. Remember, the morphisms of this particular category is just the
elements of their respective groups: hom(Grp∗G) = G and hom(Grp∗H) = H.
Therefore, in terms of its treatment of morphisms, functor F is effectively a
map between groups: for each g ∈ G,

F (g) = h

where h ∈ H.

We should also make sure that F obeys the functor axioms. For 4 ∈ ob(Grp∗G)
and � ∈ ob(Grp∗H), F must map the identity morphism for 4 to the identity
morphism for �. We previously said that these identities were eG and eH re-
spectively, where eG and eH are the identity elements of their respective groups.
Hence, this property ultimately tells us that

F (eG) = eH

The other functor axiom is that morphism composition should be preserved
through application of the functor. In other words, if g1 and g2 are morphisms
in hom(Grp∗G), then they must satisfy

F (g2 ◦ g1) = F (g2) ◦ F (g1)

In fact, if you take a step back and look at F ’s effect on the morphisms (its
effect on the objects doesn’t mean much, as there is just one object in both
categories), we’ve shown:

• F takes elements g ∈ G (morphisms in hom(Grp∗G)) to elements h ∈ H
(morphisms in hom(Grp∗G))

• F takes eG (the identity morphism for 4) to eH (the identity morphism
for �)
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• F applied to a composition of two elements (the composition of two mor-
phisms in hom(Grp∗G)) equals F applied to each individual element and
then composed (the composition of two morphisms in hom(Grp∗G).

For groups, this is exactly the definition of a homomorphism between group G
and group H! Hence, functors between categories Grp∗G and Grp∗H are essen-
tially equivalent to homomorphisms between groups G and H.

The last thing we would like to touch upon in this paper is how functors can be
used in a more theoretical context. We’ve seen what functors translate to when
applied to specific types of categories, but how might we use them outside of
applications? One cool thing functors allow us to do is to define the category
of categories!

Before we can define a category of categories, there’s one other technicality we
have to think about. All this time, we’ve been thinking about the collection of
objects and the collection of morphisms as sets—but in reality, this only applies
to a specific type of category. We provide the following definition to clear up
this distinction.

Definition. small category. A category C is called small if ob(C) and hom(C)
can be treated as sets.

After seeing this definition, a logical question would be to ask, ”how can a
category not be small?” Well, in cardinality theory it happens to be the case
that some collections are ”too large” to be sets. For instance, the set of all
sets is not considered to be a set, because it is ”too large.” Another example
of something that is ”too large” to be a set is the set of all groups. Yet while
some of the categories we’ve been working with, namely Set and Grp, are large
categories, others are small categories, such as Grph. The actual distinction
between what can be called a set and what is too large to be called a set is
outside of the scope of this paper, although it is relevant for the next definition.

We propose that the category whose objects are small categories forms a cat-
egory. The intuition for why large categories must be excluded is that for
categories which are too large, it becomes difficult to define morphisms between
those categories.

Example. Small Categories. The category of small categories, denoted Cat, is
defined as such:

• The objects are small categories, ob(Cat) = set of all small categories.

• The morphisms are functors between the small categories, hom(Cat) =
set of all functors on small categories.

• Given a small category C ∈ ob(Cat), the identity morphism on that object
is the identity endofunctor IC on that category.
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• The composition of morphisms F1 ◦F2 is the composition of functors, and
is defined as one would expect: if F1 : A → B and F2 : B → C, then
F2 ◦ F1 : A → C such that the transformations on both the objects and
the morphisms are composed, F2 ◦ F1(a) = F2(F1(a)) and F2 ◦ F1(f) =
F2(F1(f)).

Theorem. The category of small categories Cat defined above is actually a
category.

Proof. This is a routine verification of the axioms of categories, but it is worth
reviewing for completeness.

First, we verify that morphisms have unique sources and targets. Functors are
only defined as a map between one source category and one target category, so
if F : A → B and F : A′ → B′, then A = A′ and B = B′ because it wouldn’t
make sense otherwise.

Then, we show that morphisms are associative. Functors are indeed associative,
both when it comes to objects and when it comes to morphisms in the categories.
First, suppose F1 : A → B, F2 : B → C, and F3 : C → D. Consider some
object a ∈ ob(A). Then, just using the definition of the composition of functors,

(F3 ◦ (F2 ◦ F1))(a)

= F3((F2 ◦ F1)(a))

= F3(F2(F1(a)))

= (F3 ◦ F2)(F1(a))

= ((F3 ◦ F2) ◦ F1)(a)

The same process should apply for morphisms f ∈ hom(A), because the defini-
tion of functor composition is no different for morphisms than it is for objects,

(F3 ◦ (F2 ◦ F1))(f)

= F3((F2 ◦ F1)(f))

= F3(F2(F1(f)))

= (F3 ◦ F2)(F1(f))

= ((F3 ◦ F2) ◦ F1)(f)

This shows that functors are associative under composition, in the sense that
both their object mappings and morphism mappings are also associative.

Finally, we show that composition with the identity morphism does nothing.
The way identity endofunctor IC on a category C is specifically defined as
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the ”do nothing” operation: it sends objects to themselves IC(c) = c and it
sends morphisms to themselves IC(f) = f . When the identity endofunctor
is composed with any other functor, the end result should just be the other
functor, because the identity endofunctor leaves its category in the exact same
state as before. Hence F ◦ I = I ◦ F = F .
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