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Abstract. In this paper, we examine some basic group theory and Burnside’s Lemma.
Burnside’s Lemma leads to the broader Polya’s Enumeration Theorem, which ha s interesting
applications in coloring problems.

1. Group Theory Basics

Definition 1.1. [Jin] A group is a set G with an operation * that satisfies associativity,
identity, and inverses:

• Associativity: For any a, b, c ∈ G, ab(c) = a(bc).
• Identity: There exists identity element e such that eg = ge.
• Inverses: For any g ∈ G, g−1 exists such that gg−1 = e.

Definition 1.2. Let G be a group and X be a set. A group action is a function φ :
G×X → X satisfying φ(e, x) = x and φ(g, φ(h, x)) = φ(gh, x).

Definition 1.3. Let G be a group acting on X. The orbit of an element x ∈ X is the set
G.x = {gx|g ∈ G}. The orbits partition the set X. The set of orbits over X is denoted
X/G. The stabilizer of x ∈ X is Gx = {g ∈ G : gx = x}.

Definition 1.4. For an element g ∈ G, the fixed point of X is an element x ∈ X such
that gx = x, denoted by Xg.

Definition 1.5. Let G be a group and H ≤ G a subgroup, and let g ∈ G be some element.
Then the set gH = {gh : h ∈ H} is the left coset of H, and Hg is a right coset of H.

2. Burnside’s Lemma

Given G is a group acting on set X, Burnside’s Lemma states

|X/G| = 1

|G|
∑
g∈G

|Xg|

Proof. [Zha] First we prove a related theorem:

Theorem 2.1. Orbit-Stabilizer Theorem Let G be a finite group of permutations on set
X. The orbit-stabilizer theorem gives |G| = |Gx| ∗ |G.x|.

Proof. For element x ∈ X, let G.x be the orbit of x, and Gx be the stabilizer of x. Let Lx

be the set of left cosets of Gx. The function f is defined f : G.x→ Lx.

We have that f is surjective by definition, because it is defined to be the function from
G.x to the left coset.
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We also have gGx = g′Gx, then for some h ∈ Gx, g = g′h. This means gx = (g′h)x =
g′(hx) = g′x, which gives f is injective. Hence, we have the function f is a bijection, which
proves Orbit-Stabilizer. �

Thus, we have

|X/G| =
∑
x∈X

1

|G.x|

=
∑
x∈X

|Gx|
|G|

=
1

|G|
∑
x∈X

|Gx|

=
1

|G|
∑
g∈G

|Xg|.

�

Example of Burnside’s Lemma: [Jin] Consider the different colorings of points on a square
with 2 colors, up to rotation.

We define a group action G acting on X such that gx is the rotation of some configuration x
by some transformation g. Hence, the orbits of this action represent distinct configurations
up to rotation. The four transformations g ∈ G are

(1) Rotate 0◦ The number of fixed points Xg given g is a 0◦ rotation is the total amount
of possible colors = 24.

(2) Rotate 90◦ The only fixed points would be coloring all vertices the same color = 2.

(3) Rotate 180◦ The two corresponding vertices of a pair must be the same color, so the
number of fixed points is 22.

(4) Rotate 280◦ Similar to the 90◦ rotation so we have 2 colorings.

Hence, Burnside’s Lemma gives the total number of distinct colorings to be

|X/G| = 1

4
(24 + 2 + 22 + 2) = 6.
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3. Polya’s Enumeration

Polya’s Enumeration provides a generalization of Burnside’s Lemma, but moreover it allow
us to weight ”colors”. First, we introduce some necessary definitions:

Definition 3.1. Let p be a permutation on X. The type of p is the set {b1, b2, ...bn} such
that bi is the number of cycles of length i in the cycle decomposition of p.

Definition 3.2. Let the colors c ∈ C have positive integer weights w(c). The weight of a
coloring q is the sum of the weights of the colors used:

w(q) =
∑
x∈X

w(q(x)).

Definition 3.3. Cycle index Let G be a permutation group. The cyclic index of the group
is defined as

ZG(t1, t2, ...) =
1

|G|
∑
g∈G

tb11 t
b2
2 ...,

where ti denotes the cycle length and bi denotes the number of cycles of length i in the cycle
decomposition of g.

Definition 3.4. We also have that the generating function for a set of colors of

f(t) = f0 + f1t+ f2t
2 + ...,

where fi is the number of colors with weight i.

Now that we’ve covered the prerequisite knowledge of Polya’s Enumeration, note that
there are two versions of the theorem: namely the unweighted and the weighted versions.
We first state the unweighted:

Theorem 3.5. [ZF] Polya’s Enumeration Theorem (Unweighted). Let X be a set
with group action induced by a permutation group G on X. Let C be a set of colors on X,
and let CX be the set of functions f : X → C. Then

|CX/G| = 1

|G|
∑
g∈G

|C|c(g),

where c(g) is the number of cycles of g on X.

Proof. This is equivalent to Burnside’s Lemma because |C|c(g) is the number of points fixed
by g. A point is ”fixed” if all elements in the cycle has the same color, which is exactly what
Burnside’s Lemma states. �

We now state the weighted version:

Theorem 3.6. [ZF] Polya’s Enumeration Theorem (Weighted). The generating
function of the number of colored arrangements by weight is given by

F (t) = ZG(f(t), f(t2)...).
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Proof. It can be shown that ∑
colorings fixed by g

tw(q) =
∏
i

f(ti)mi(g).

We can then show that
1

|G|
∑
g∈G

∏
i

f(ti)mi(g) = F (t) = ZG(f(t), f(t2), ...).

Applying Burnside’s on the set of colorings of weight i and summing for all i gives us the
desired result.

�

Now let’s put everything together to see how cycle index, generating functions, and Polya’s
Enumeration Theorem work together:

Example. Count the number of graphs with 4 vertices.

We want the cycle index of S4, because the permutation group of the graph is S4. We
count the different cycle lengths:

(1) 6 edges of length 1 This is simply the permutation group (), giving us 1 possibility.

(2) 2 edges of length 1, 2 cycles of length 2 We have 3 different cycles of the form (1x),
and

(
4
2

)
= 6 possibilities of the form (1a)(bc), giving us 9 possibilities.

(3) 2 cycles of length 3 There are
(

4
3

)
= 4 ways to choose the elements in the cycle, and

2 different cycles we can form from any 3 elements, giving us 8 possibilities.

(4) 1 cycle of length 2, 1 cycle of length 4 If the cycle takes the form (1abc), any per-
mutation of the remaining 3 give us a new cycle, giving us 3! = 6 possibilities.

Hence, we have the cycle index

ZS4(t1, t2, t3, t4) =
1

24
(t61 + 9t21t

2
2 + 8t23 + 6t2t4).

From Definition 3.4, we have the generating function of the graph is

f(t) = 1 + t

.
From Polya’s Enumeration Theorem, we have

F (t) = ZG(1 + t, 1 + t2, 1 + t3, 1 + t4)

=
1

24
((1 + t)6 + 9(1 + t)2(1 + t2)2 + 8(1 + t3)2 + 6(1 + t2)(1 + t4))

= t6 + t5 + 2t4 + 3t3 + 2t2 + t+ 1.

Hence, we have 1 graph with 6 edges, 1 graph with 5 edges, 2 graphs with 4 edges, 3 graphs
with 3 edges, 2 graphs with 2 edges, 1 graph with 1 edge, and 1 graph with 0 edges.
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