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Abstract. In this paper, we aim to both prove two important
propositions and discuss some of the fundamental components of
Differential Galois theory.

1. Introduction

We will prove the following two propositions:

Proposition 1.1.
∫
e−x

2
dx is non-elementary.

Proposition 1.2. Y ′′ + xY = 0 has no elementary solutions.

Differential Galois theory, in general, plays a major role in defining
the elementary nature of differential equations and integrals. Some
theorems and propositions discussed in this paper can be applied to
any equation to check for the validity or existence of an elementary
solution or antiderivative.

2. A review of ring theory

In order to properly define some of the theorems and terms, a good
understanding of ring theory is helpful. For that, we first start with
a ring. A ring is an algebraic object similar to fields, however a ring
does not necessarily need to have a multiplicative inverse. Because of
that, although the set of integers Z does not form a field, it does form
a ring. A more rigorous definition is as follows:

Definition 2.1. A commutative ring R is an abelian group equipped
with two binary operations: × and + (multiplication and addition),
and satisfies the following conditions:

(1) a + (b + c) = (a + b) + c and a × (b × c) = (a × b) × c for all
a, b, c ∈ R

(2) There is an identity element for both binary operations, eA and
eM , such that a+ eA = a and a× eM = a for a, eA, eM ∈ R.

(3) All elements a ∈ R have an additive inverse a−1 ∈ R such that
a+ a−1 = eA

(4) For all a, b, c ∈ R, a× (b+ c) = a× b+ a× c
1
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(5) For all a, b ∈ R, a+ b = b+ a and a× b = b× a

One can also redefine fields in the context of rings by creating an
element that would serve as the multiplicative inverse. For this reason,
any field is also a ring. Throughout field and group theory, we see
the notions of subgroups and subfields arising, however in ring theory
and especially differential Galois theory, it is not subrings, but rather
ideals we are interested in. A major reason as to why subrings aren’t
as interesting is because in some cases, the binary operations don’t
work well. More specifically, the identity in a subring may not match
the identity of the ring itself. An example of this is with the ring
R = R × R = {(x, y)|x, y ∈ R}. Take a subring L such that L =
R × {0} = {(z, 0)|z ∈ R}. The multiplicative identity of R would
be (1, 1) while the multiplicative identity in L would be (1, 0). This
motivates the following definition.

Definition 2.2. Suppose R is a ring and suppose we have a nonempty
proper subset I ⊆ R. We consider I to be an ideal of R if the following
conditions are met:

(1) a+ b ∈ I for all a, b ∈ I
(2) ar ∈ I for all a ∈ I and r ∈ R

This allows us to define the following:

Definition 2.3. An ideal I is a prime ideal of a ring R if I 6= R and
for all a, b ∈ R such that ab ∈ I, either a ∈ I or b ∈ I.

Although these definitions sound rather similar, a simple example
will clear up the difference. Suppose we have a ring R that is the set of
integers Z. Let’s take the subset I = 10Z. First, we need to verify that
this is indeed an ideal. If we add any number of multiples of 10, we
get another multiple of 10, so the first condition is satisfied. If we take
any element in R and multiply it by any multiple of 10, we get another
multiple of 10. Thus both conditions are satisfied and I is an ideal.
However, we can check that it is not a prime ideal because we can take
5 · 2 = 10, but neither 5 nor 2 are in I. If we take I = 5Z, however,
we see that it is not only an ideal, but also a prime ideal because every
element in I will have at least one factor that is a multiple of 5. From
this, you can also see why it’s called a prime ideal. The idea of a prime
ideal allows us to define the following:

Definition 2.4. The spectrum of a ring R is the set of its prime ideals.
We also denote this as Spec (R).
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Another concept that’s often used in ring theory is the concept of
a polynomial ring, which is similar to the field extension of rational
functions, but consists only of polynomials.

Definition 2.5. Let R be some commutative ring. The polynomial
ring in an indeterminate (variable) X over R is a ring denoted K[X]
and consists of polynomial elements of the form p = p0 +p1X+p2X

2 +
...+ pnX

n with all coefficients p0, ..., pn ∈ K.

This definition can be generalized to multiple indeterminates, with
polynomial ring R[X1, X2, ..., Xn] which is the set of all polynomials in
X1, ..., Xn with coefficients in R. For example, an element of R[X1, X2]
could be 14X1 + π

3
X2

1X2 +
√

3X5
2 .

3. Differential Ring & Field theory

Now that we have defined most of the algebraic ring and field theory
terms we need, we can move onto some of the more interesting theorems
and definitions in differential ring and field theory.

Definition 3.1. These are fundamental definitions for this section.

(1) A differential ring R is a commutative ring endowed with the
derivation D that follows the Leibniz rule D(ab) = D(a)b +
aD(b) for a, b ∈ R

(2) A differential field K is a field endowed with the derivation D
that follows the Leibniz rule D(ab) = D(a)b+aD(b) for a, b ∈ K

(3) An ideal is a differential ideal if it is closed under D

An example of a differential field is the field of rational functions
over both real and complex numbers. This is the most common field
of functions that we can differentiate and these prove to be very useful
throughout this paper. In the case of the proposition, we are interested
in the elements of K that are of the form of an ordinary differential
equation. We can further categorize the equations of interest as the
following:

Definition 3.2. A linear differential equation is an equation with the
successive derivatives of a function of x with respect to y. In other
words, it is an operator of the form anD

n +an−1D
n−1 + ...+a1D

1 +a0,
where ai ∈ K. n is also known as the order of this equation.

Now, we move on to some important properties of differential rings.

Proposition 3.3. Suppose we have a differential ring R such that
K ⊂ R.

(1) For all a, b ∈ R, D(a
b
) = D(a)b−aD(b)

b2
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(2) Let I ⊂ R be a maximum ideal. I is a prime ideal

Proof. (1) Rewriting this as D(ab−1), then applying the Leibniz
rule, the proposition follows.

(2) If we assume that R has no proper differential ideals, then we
just need to prove that R is an integral domain (meaning the
product of any two nonzero elements is nonzero). By way of
contradiction, suppose a, b ∈ R and ab = 0. We can say that
for all k ∈ N, Dk(a)bk+1 = 0. Applying D over this again,
we get Dk+1(a)bk+1 + (k + 1)Dk(a)bkD(b). Multiplying this
by b, we arrive at Dk+1(a)bk+2 = 0. Assume we have M as the
differential ideal generated by a and its derivatives. This means
that all elements of M are zero divisors. In other words, there
is a nonzero f such that ef = 0, in the context of our equation.
M is now a proper differential ideal of R, with a being nonzero
and b being nilpotent (there is some n such that bn = 0). It
follows that every zero divisor in R is nilpotent. We know that
D(an) = nan−1D(a). Since K ⊂ R, nan−1 6= 0, which means
that D(a) must be a zero divisor, so all a is nilpotent. So,
this means that M is a proper differential ideal, which is a
contradiction. Thus, R is an integral domain and I is a prime
ideal.

�

There are other elements of field and ring theory that have differential
analogs, such as extensions and homomorphisms

Definition 3.4. A differential extension is an extension (of either a
ring or a field) that extends the derivative onto new elements while
keeping already defined derivatives the same.

A common differential extension used in this paper is the polynomial
ring, denoted by R{Y } = R[Y, Y ′, Y ′′, ...], consisting of all polynomials
in variables Y, Y ′, ... with coefficients in R. R{Y } is known as the
ring of polynomials in differential indeterminate Y . This definition can
similarly be extended to multiple indeterminates by R{Y1, Y2, ..., Yn}.

A differential field extension, denoted by K〈Y 〉, can be similarly
defined as the field of differential rational functions in Y .

In other words, R{Y } can be considered the differential analog of
polynomial ring R[x], while K〈Y 〉 can be considered the differential
analog of the field of rational functions K(x).

Homomorphisms and automorphisms are also important to bring
over from regular field theory, and become especially important in the
context of Galois theory.
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Definition 3.5. Let R and S be differential rings with derivations DR

and DS respectively. A homomorphism of differential rings φ : R→ S
is a homomorphism from R to S that respects the derivation, such that
φ(DR(a)) = DS(φ(a)) for any a ∈ R.

The definition is the same for a homomorphism of differential fields.
We note that a lot of the properties we deal with in differential ring

theory is simply the differentiation rules taught in basic calculus. We
can apply the differential operator D to a variety of cases to manipulate
a differential equation or prove something, and it’s important to note
that a lot of these concepts are directly analagous to the concepts in
algebraic ring theory.

4. Solution Sets and Picard-Vessiot Theory

Differential Galois theory has many parallels in algebraic Galois
theory; we are just dealing with differential equations and their respec-
tive solutions this time. Just like in algebraic Galois theory, where
the roots of a polynomial define a splitting field, the solutions to the
differential equation define a Picard-Vessiot extension. However, the
solutions to a differential equation are slightly different than roots of a
polynomial:

Definition 4.1. Suppose we have a differential equation L(Y ) = 0.
If L has order n with coefficients in the field K, then the differential
extension E/K is a Picard-Vessiot extension if:

(1) E is generated by some {y1, . . . , yn} with yi ∈ E that form a fun-
damental solution set to L(Y ) = 0 such that E = K〈y1, . . . , yn〉

(2) CE = CK

We can see an example of a Picard-Vessiot extension with the dif-
ferential equation L(Y ) = Y ′ + Y = 0. The solution set to this is
{e−x}, thus the Picard-Vessiot extension is K〈e−x〉/K. With higher
order differential equations, it’s possible to apply change of variables,
and find a system of differential equations with a solution set. Now,
the similarities between a Picard-Vessiot extension and a splitting field
from algebraic Galois theory should be clear.

Another important aspect of differential equations is the notion of
a fundamental solution set, which deals with linear independence and
solubility.

Definition 4.2. Let L(Y ) = Y (n) +an−1Y
(n−1) + · · ·+a1Y

(1) +a0Y be
a monic homogeneous linear differential equation over differential field
K, with ai ∈ K. A fundamental solution set of L is a set of solutions
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{y1, . . . , yn} such that L(yi) = 0 for i = 1, . . . , n. Additionally, this set
must be linearly independent over the field of constants CK .

Often times, checking for linear independence through more rudi-
mentary methods may be difficult or time-consuming. Because of this,
we have a tool known as the Wronskian which is used in the study of
differential equations to easily verify whether any set of elements in a
differential field is linearly independent, and it requires a bit of linear
algebra.

Definition 4.3. Let R be a differential ring and y1, . . . , yn ∈ R. The
Wronskian of these elements is the determinant of an n × n matrix
comprising of the elements and their n− 1 derivations.

W (y1, y2, ..., yn) = det




y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n




Theorem 4.4. Let K be a differential field, and let C be its field of
constants. Any elements y1, . . . , yn ∈ K, are linearly dependent over C
if and only if W (y1, . . . , yn) = 0.

Proof. Let A be the matrix corresponding to W (y1, . . . , yn). It can
be proven using linear algebra that there is some non-trivial column
vector v consisting of n elements in C that is a solution to the equation
Av = 0 if and only if A is not invertible. It can further be shown that
A is not invertible if and only if its determinant is zero.

Assume y1, . . . , yn are linearly dependent such that there exist some
c1, . . . , cn ∈ CK such that c1y1 + · · · + cnyn = 0. Furthermore, if we

take any kth derivative of the equation, we get c1y
(k)
1 + · · ·+ cny

(k)
n = 0.

The column vector consisting of c1, . . . , cn is then a solution to Av = 0,
and the determinant W (y1, . . . , yn) = 0.

Conversely, the determinant being 0 guarantees a column vector so-
lution, which gives a non-trivial linear combination of y1, . . . , yn that
equals 0, proving linear dependence. �

We can apply this theorem to a fundamental solution set, and for
some solution set {y1, . . . , yn}, if W (y1, . . . , yn) 6= 0, it follows that
{y1, . . . , yn} is not linearly independent. The matrix corresponding
to the Wronskian for some fundamental solution set is known as a
fundamental solution matrix.

Furthermore, since we can find a solution set that is linearly indepen-
dent, we can create the solution space of L, which is the n-dimensional
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vector space over CK with a fundamental solution set as its basis. All
elements of this solution space will be a solution of L(Y ) = 0.

For example, a fundamental solution set of L(Y ) = Y ′′ − Y ′ = 0
is {1, ex}. Its Wronskian W (1, ex) = det( [ 1 e

x

0 ex ] ) = ex 6= 0, meaning
that the solution set is linearly independent. Therefore, the solution
space of this linear differential equation consists of elements in the form
c1 + c2e

x for c1, c2 ∈ CK .

5. Special extensions and Liouville’s Theorem

There are a few special types of Picard-Vessiot extensions that we
are interested in, comparable to radical extensions in algebraic Galois
theory.

Definition 5.1. Let E/K be a differential field extension. An element
y ∈ E is Liouvillian over K if

(1) y is algebraic over K
(2) y is the antiderivative of some element in K, i.e. y′ ∈ K
(3) y is the exponential of the antiderivative of some element in K,

i.e. y′

y
∈ K

Definition 5.2. An extension E/K is a Liouvillian extension if there
exists a tower of field extensions

K = F0 ⊆ F1 ⊆ · · · ⊆ Fn = E

such that for all i = 1, . . . , n there is some y ∈ Fi that is Liouvillian
over Fi−1 and Fi = Fi−1(y).

Definition 5.3. Let E/K be a differential field extension. An element
y ∈ E is called elementary over K if

(1) y is algebraic over K
(2) y is the logarithm of some element in K
(3) y is the exponential of some element

Definition 5.4. An extension E/K is an elementary extension if there
exists a tower of field extensions

K = F0 ⊆ F1 ⊆ · · · ⊆ Fn = E

such that for all i = 1, . . . , n there is some y ∈ Fi that is elementary
over Fi−1 and Fi = Fi−1(y).

We note that the definitions for elementary and Liouvillian elements
are very similar, except that elementary elements do not allow the use of
the antiderivative. This definition additionally includes all of the usual
calculus functions such as logarithms, exponentials, and trigonometric
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functions (using Euler’s identity), so it is a fitting definition. It also
allows us to state and prove the following theorem, which will not be
used until the Galois theory section but is important to note.

Theorem 5.5. If an element y is elementary, it will be also contained
in some Liouvillian extension of C(x).

Proof. We can show that any element that is elementary over some
differential field K is also Liouvillian over K, so we can use the same
tower of field extensions of the elementary element y as a Liouvillian
extension. There are 3 cases:

(1) y is algebraic over K is the same for both definitions.
(2) If some elementary element w is the logarithm of some element

a ∈ K, it is the antiderivative of the element a′/a, which is
guaranteed to appear in K.

(3) If some elementary element w is the exponential of some element
a ∈ K, it is the exponential of the antiderivative of a′, which is
guaranteed to appear in K.

�

The formal definitions of a Liouvillian element and a Picard-Vessiot
extension and field greatly help with solubility. Liouville also came up
with an important theorem that will help us complete the proof of our
proposition. First, we informally define the elementary extension field
of a field F as the extension containing all elementary solutions to a
particular differential equation.

Theorem 5.6. (Liouville) Suppose F is a field of characteristic 0 and
we have α ∈ F . If we have Y ′ = α for some Y in the elementary exten-
sion field of F , then there exists constants c1, ..., cn ∈ F and elements
y1, ..., yn, v ∈ F such that

α =
n∑
i=1

(ci ·
y′i
yi

) + v′

The proof of this theorem is rather long (6 − 7 pages), so we leave
that to the reader to look into. The theorem basically states that if
an elementary solution exists, it can be written in this form. More
specifically:

Proposition 5.7. If α can be written in the form of Theorem 21, then
α has an antiderivative that lies in the elementary field extension of F .
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Proof. F (ln(y1), ..., ln(yn)) is an elementary field extension. Rewriting
this in the form of Theorem 12, we see that this is equivalent to

y =
n∑
i=1

(ci · ln(yi)) + v′

We note that D(ln(yi)) =
y′i
yi

, thus y is an elementary antiderivative of
a. �

Liouville’s theorem and the above proposition give rise to a corollary
that will be useful to prove the nonexistence of an elementary solution
to any given integral (that is non-elementary, of course). Our initial

proposition is proving that e−x
2

has no elementary solution. So, we are
interested in functions in the form feg with f, g ∈ C(x).

Corollary 5.8. If f, g ∈ C(x) and f is nonzero and g is non-constant,
then y = f(x)eg(x) has an elementary antiderivative iff there exists a
rational function R ∈ C(x) such that R′(x) + g′(x) ·R(x) = f(x).

Proof. Suppose a rational function R exists that satisfies this equation.
Then it follows that:

(R(x) · eg(x))′ = R′(x) · eg(x) + g′(x) ·R(x) · eg(x)
= (R′(x) + g′(x) ·R(x))eg(x)

= f(x) · eg(x)

This means that f(x) · eg(x) does indeed have an elementary antideriv-
ative, namely, (R(x) · eg(x)). �

This is an extremely powerful tool when proving insolubility, and it’s
exactly what we need to prove proposition 1.1. So, we move to that.

6. proof of the first proposition

In order to prove the nonexistence of an elementary solution for the
function e−x

2
, by the corollary, it suffices to show that it cannot be

written in the form R′(x) + g′(x) ·R(x), with the function being in the
form f(x)eg(x).

Proof. By way of contradiction, suppose we can rewrite e−x
2

in the form
R′(x)−2x·R(x) = 1, for some rational functionR(x). However, this can
never be the case because deg(2x · R(x)) ≥ 1 > deg(R′(x)), assuming

R(x) 6= 0. Thus, e−x
2

has no elementary antiderivative, completing the
proof of this proposition. �
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7. Differential Galois Theory

For this section, we will be utilizing some advanced theorems and
propositions from linear algebra and group theory in order to delve
deeper into the topic of differential Galois theory.

We start by defining the differential Galois group, whose structure
is almost identical to its algebraic counterpart.

Definition 7.1. Let E/K be the Picard-Vessiot extension of linear
differential equation L(Y ) = 0. The differential Galois group, denoted
Gal(E/K), is the group of differential automorphisms of E which fix
K.

Since differential homomorphisms respect derivation, we are able to
draw even more parallels to algebraic Galois groups.

Proposition 7.2. Let E/K be the Picard-Vessiot extension of linear
differential equation L(Y ) = 0, and let σ ∈ Gal(E/K) be some auto-
morphism of E/K. For any y ∈ E that is a solution to L, σ(y) must
be a solution to L as well.

Proof. Suppose L(Y ) = anY
(n) + an−1Y

(n−1) + · · · + a1Y
(1) + a0Y for

ai ∈ K (which are fixed by σ).

0 = σ(L(y))

= σ(any
(n) + an−1y

(n−1) + · · ·+ a1y
(1) + a0y)

= anσ(y(n)) + an−1σ(y(n−1)) + · · ·+ a1σ(y(1)) + a0σ(y)

= anσ(y)(n) + an−1σ(y)(n−1) + · · ·+ a1σ(y)(1) + a0σ(y)

This implies that σ(y) is also a solution of L. �

Similar to algebraic Galois theory, automorphisms of a Picard-Vessiot
extension must map a solution to another solution. Furthermore, au-
tomorphisms are completely defined by their action on generators of
the field extension. But, the difference is that there is no longer a
finite solution set, as the solutions of a differential equation form an
n-dimensional vector space, which somewhat complicates the automor-
phism.

Subsequently, while the Galois group of a minimal polynomial is
isomorphic to a subgroup of a symmetric group, differential Galois
groups of linear differential equations are isomorphic to the subgroup
of a specific kind of group in linear algebra.

Definition 7.3. The general linear group over a ring R of degree n is
the group of n× n matrices that are invertible (non-zero determinant)
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and have entries in R. The binary operator of this group is standard
matrix multiplication. The general linear group is generally denoted
GLn(R).

We can show that any differential automorphism of a Picard-Vessiot
extension can be represented as some n×n matrix with entries in CK .

Let M be the fundamental solution matrix of L(Y ) = 0 , and let
E/K be its Picard-Vessiot extension. We know for any automorphism
σ ∈ Gal(E/K), σ(yi) = ci1y1 + ci2y2 + · · ·+ cinyn for all i = 1, 2, . . . , n,

and we know that σ(y
(k)
i ) = σ(yi)

(k) which will keep the constants the
same, so we can represent this automorphism in matrix form:

σ(M) = M


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn


Furthermore, the columns must be linearly independent and have a

nonzero determinant, thus automorphisms are elements of the general
linear group. This allows us to state the following theorem.

Theorem 7.4. The differential Galois group of a linear differential
equation L of degree n is a closed subgroup of GLn(CK).

Example: Consider the linear differential equation L(Y ) = Y ′′−Y ′ =
0 over field F = C(x). Its fundamental solution set is {1, ex}. Any
automorphism σ ∈ Gal(F (ex)/F ) must map σ(ex) = c1 + c2e

x for some
c1, c2 ∈ CF = C. From here, we can take the derivative of σ(ex) to
get more information about c1 and c2: D(σ(ex)) = σ(D(ex)) =⇒
D(c1 + c2e

x) = σ(ex) =⇒ c2e
x = c1 + c2e

x =⇒ c1 = 0. The Galois
group can be written as

Gal(E/K) ∼=

{[
1 0
0 c

] ∣∣∣∣∣c ∈ C×
}

since c must be non-zero.
The Galois correspondence also has a differential analogue as follows:

Theorem 7.5. Let E/K be a Picard-Vessiot extension, and let G =
Gal(E/K). There is an inclusion-reversing bijection between interme-
diate differential fields F and subgroups H of the Galois group, given
by H 7→ EH and F 7→ Gal(E/F ).

8. Proof of Proposition 1.2

In order to prove this proposition, we use an approach involving Airy
Equations.
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Definition 8.1. An Airy Equation is a differential equation of the form
Y ′′ − xY = 0.

The equation of interest for us is in this form, so we aim to prove
that the Airy Equation does not have an elementary solution set, con-
cluding the proof of this proposition. The proofs of the next theorem
and proposition are rather long, so we leave them for the reader to
look into. (The proof for Theorem 8.2 involves the differential Galois
correspondence analogue, which can be seen from Theorem 7.5). Also
note that theorem 8.2 is the differential analogue of the Abel-Ruffini
Theorem.

Theorem 8.2. Suppose we have a differential field K such that
M(U)/K/C(x) with U ⊂ C. (M is the field of meromorphic func-
tions). Let L be a differential operator on K. If we have K ↪→ F ,
where F represents the splitting field, and it is contained in a Liou-
villian extension, then there exists a sequence of subgroups such that
1 = Gn E · · · E G0 = G for some group G := Gal(EL/K), where EL
represents the splitting field and each Gi/Gi+1 is finite, isomorphic to
C, or isomorphic to C×.

Proposition 8.3. Suppose the splitting field of an Airy Equation is
represented by EL. Then we have Gal(EL/C(x)) ∼= SL2(C).

Proposition 8.4. No chain of subgroups of SL2(C) exists such that
Theorem 8.2 is satisfied.

Proof. Since SL2(C) is simple, it contains no proper subgroups with
a finite or abelian quotient, thus the chain of subgroups satisfying the
properties of 8.2 can never be attained. �

This leads to the following corollary, which will be enough to prove
our initial proposition.

Corollary 8.5. The Airy functions do not have an elementary solution
set.
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