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Abstract. In this paper we shall first discuss basic group theory and Burnside’s lemma.
After that we shall move onto the main topic, Polya’s Enumeration Theorem, and its proof.

1. Basic Group Theory

To prove Polya’s Enumeration Theorem, we must start with the basics of group theory.

Definition 1.1. A group is a set G, along with an operation · such that it satisfies the
following properties:

(1) The operation is associative: a · (b · c) = (a · b) · c.
(2) Given any two elements g, h ∈ G, we have g · h ∈ G.
(3) There exists an element e ∈ G, such that for any g ∈ G, we have

e · g = g · e = g.

(4) For any element g ∈ G, there exists some element g−1 ∈ G so that

g · g−1 = g−1 · g = e

Remark 1.2. A group doesn’t have to be commutative, i.e., for any two elements g, h ∈ G,
g ·h = h ·g. Commutative groups are also called abelian groups, and not commutative groups
are called non-abelian.

We will now move on to subgroups:

Definition 1.3. Let G be a group, and let H be a nonempty subset of G. We say H is a
subgroup of G and we write H ≤ G if it satisfies the following properties:

(1) For any g, h ∈ H, we have g · h ∈ H.
(2) For any h ∈ H, h−1 ∈ H

In other words, H is a group by itself.

2. Definitions and Lemmas

We will need some more advanced definitions for some theorems.

Definition 2.1. Given a group action φ of a group G acting on a set H, we define the orbit
of an element h ∈ H to be

orb(h) = Oh = {gh : g ∈ G}

We will now define the stabilizer and the transformer:
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Definition 2.2. Given a group action φ of a group G acting on a set H, we define the
stabilizer of an element h ∈ H to be

stab(h) = Shh = {g ∈ G : gh = h}

Definition 2.3. Given a group action φ of a group G acting on a set H, we define the
transformer of two elements h, i ∈ H to be

trans(h, i) = Shi = {g ∈ G : gh = i}

We will also need the definition of a quotient:

Definition 2.4. Given a group action φ of a group G on a set X, the quotient of φ is defined
as

X/G = {Ox : x ∈ X}

Let’s start proving some propositions with our new tools!

Proposition 2.5. For any group action phi of a group G acting on a set X, Sxx ≤ G for
all x ∈ X.

Proof. Since associativity is ”inherited” from the structure of G, we will only have to check
for the closure, identity, and inverse properties of a subgroup. For gi, gj ∈ Sxx and x ∈ X,
we have

• Closure: Obviously, gi(gjx) = gix = x. By the compatibility property of φ, we have
(gigj)x = x⇒ gigj ∈ Sxx.

• Identity: Clearly, the identity element e ∈ G is in Sxx because ex = x.

• Inverse: Consider some gi ∈ Sxx. Since gix = x, we also have g−1i (gix) = g−1i x ⇒
g−1i x = (g−1i gi)x = ex = x. Then, by compatibility of φ we have g−1i ∈ Sxx

�

3. Supporting Theorems and Prerequisites

We will need these supporting theorems and definitions to prove it, especially the Orbit-
Stabilizer theorem:

Theorem 3.1. Orbit-Stabilizer Theorem. Given any group action φ of a group G on a
set X, for all x ∈ X,

|G| = |Sxx||Ox|.

We will now prove Burnside’s Lemma, which is essential to the proof of the main theorem.
We can calculate the order of the group, the size of the stabilizer, and the size of the orbit.
But we still can’t find the number of orbits. This is what Burnside’s Lemma, which is
attributed to Cauchy is about this:
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Theorem 3.2. Burnside’s Lemma. Given a finite group G, a finite set X, and a group
action φ of G acting on X, the number of distinct orbits is

|X/G| = 1

|G|
∑
g∈G

|Xg|,

where Xg denotes the set of all elements fixed by g.

Proof. We can see that∑
g∈G

|Xg| = |(g, x) ∈ (G,X) : gx = x| =
∑
x∈X

Sxx.

This means that now we only have to prove that

|X/G| = 1

|G|
∑
x∈X

|Sxx|.

Using the Orbit-Stabilizer theorem, we have |Sxx| = |G|
|Ox| , so we get

1

|G|
∑
x∈X

|Sxx| =
1

|G|
∑
x∈X

|G|
|Ox|

=
∑
x∈X

1

|Ox|

Since orbits partition X, we can split up X into disjoint orbits of X/G. This means we can
rewrite our sum: ∑

x∈X

1

|Ox|
=
∑

A∈X/G

∑
x∈A

1

|A|
=
∑

A∈X/G

1 = |X/G|,

where A is an orbit in X. Thus, |X/G| = 1
|G|
∑

x∈X |Xg|, so we are done. �

Polya’s Enumeration Theorem involves multiple definitions as it uses functions from one
finite group to another.

Definition 3.3. Type. Let p be a permutation on X. Then, we define the type of p to be
the set {b1, b2, . . . , bn}, where bi is the number of cycles of length i in the cycle decomposition
of p.

Definition 3.4. Cycle Index Polynomial We define the Cycle Index polynomial Zφ of
the group action φ is

Zφ(x1, . . . , xn) =
1

|G|
∑
g∈G

n∏
i=1

x
bi(g)
i ,

where bi(g)is the ith element of the type of the implied permutation pg ∈ Sym(X).

Definition 3.5. Function equivelence. Two functions f ∈ Y X are said to be equivalent
under the action of G(f1 ∼φ f2) if they are in the same orbit of φ’, i.e., there is a g ∈ G so
that f2 = gf1.

Definition 3.6. Configuration. A configuration is an equivalence class of the equivalence
relation ∼G on Y X .
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Definition 3.7. Weight. Let w : Y → R be an assignment to each element in Y. We define
the weight of a function f ∈ Y X to be

W (f) =
∏
x∈X

w(f(x)).

One last definition:

Definition 3.8. Configuration Generating Function (CGF) Let C be the set of all
configurations c. Then the CGF is

F (C) =
∑
c∈C

W (c).

4. Polya’s Enumeration Theorem

We can now prove Polya’s Enumeration Theorem, both its weighted and unweighted forms.
The unweighted form comes very easily from Burnside’s Lemma.

Theorem 4.1. Polya’s Enumeration Theorem (Unweighted). Let G be a group
and X, Y be finite sets, where |X| = n. Then for any group action φ of G on X, the number
of distinct configurations in Y X is

|C| = 1

|G|
∑
g∈G

|(Y )|c(g),

where c(g) denotes the number of cycles in the cycle decomposition of pg ∈ Sym(X), the
permutation of X associated with the action of g on X.

Proof. Because configurations are orbits of φ’, we can see that |C| = |Y X/G| under φ′. We
can apply Burnside’s Lemma to the finite set Y X with group action φ′. Then, we have

|Y X/G| = 1

|G|
∑
g∈G

|(Y X)g|.

Now, all we have to show is that |(Y X)g| = |Y |c(g). A function f ∈ Y X will remain constant
under the action of g if and only if all elements in X in each cycle are assigned the same set
element in Y . This means that there are |Y | choices of elements in Y for each of the c(g)
cycles in the cycle decomposition, and we are done. �

Let’s move onto the weighted version:

Theorem 4.2. Polya’s Enumeration Theorem (Weighted). Let G be a group and
X, Y be finite sets, where |X| = n. Let w be a weight function on Y . Then for any group
action φ of G on X, the CGF is given by

Zφ

(∑
y∈y

w(y),
∑
y∈Y

w(y)2, . . . ,
∑
y∈Y

w(y)n

)
.

Proof. To prove this, we will need a simple lemma:

Lemma 4.3.

|C| = 1

|G|
∑
g∈G

|{f ∈ Y X |(∀x ∈ X)(f(gx) = f(x))}|
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Proof. Let φ′R be the group action on Y X induced by φ:

φ′R : (f, g)→ f ′R = f ◦ pg = {(x, f(φ(g, x)))|x ∈ X},

where f ∈ Y X and g ∈ G. To complete the proof, we apply Burnside’s Lemma, and we are
done. �

We can now set φ′R as our group action on Y X . We let A(w) = {c ∈ C|W (c) = w} which
is the set of all configurations with weight w. We then have Sgg = {f ∈ Y X |f = fg} is the
set of all functions stabilized by g. We then let Sgg(w) = {f ∈ Y X |f = fg,W (f) = w} be
the set of all functions that stabilize g with weight w. Then, we have

|A(w)| = 1

|G|
∑
g∈G

|Sgg(w)|.

We group of CCF by weights, but since our sum is finite, we switch the order:

CGF =
∑
c∈C

W (C) =
∑
w

w|Sgg(w)| = 1

|G|
∑
g∈G

∑
f∈Sgg

W (f).

Since G permutes X through the group action, we have that the corresponding permutation
pg for g ∈ G has a cycle decomposition C1, . . . , Ck, where k ≤ n. It follows that if f ∈ Sgg,
we have f(x) = f(gx) = f(g2x) = . . . for all x ∈ X, g ∈ G, and f is constant on each cycle
Ci in the cycle decomposition. Now, we have∑

f∈Sgg

W (f) =
∑
f∈Sgg

∏
x∈X

w(f(x)) =
∑
f∈Sgg

k∏
i=1

∏
x∈Ci

w(f(x)) =
∑
f∈Sgg

k∏
i=1

w (f (xi))
|Ci| ,

where x1 ∈ Ci. Now, we let |Y | = m. Since we are summing over all f ∈ Sgg, we will have
to cover all possible assignments of y ∈ Y to cycles Ci. Thus, so our equation becomes∑

f∈Sgg

W (f) =
k∏
i=1

(
w (y1)

|Ci| + . . .+ w (ym)
)|Ci|

=
k∏
i=1

∑
y∈Y

w(y)|Ci|.

We plug it into our GCF expression to get

CGF =
1

|G|
∑
g∈G

(
k∏
i=1

∑
y∈Y

w(y)|Ci|

)
.

Regardless of cycle length, by definition of the type, there will be bj(g) cycles of length j, so
our expression becomes

CGF =
1

|G|
∑
g∈G

n∏
j=1

(∑
y∈Y

w(y)j

)bj(g)

= Zφ

(∑
y∈Y

w(y),
∑
y∈Y

w(y)2, . . . ,
∑
y∈Y

w(y)n

)
,

and we are done.
�

Polya’s Enumeration Theorem has many applications in places where you would not ex-
pect it to come up in, such as organic chemistry. For applications of Polya’s Enumeration
Theorem, refer to [Noe10].
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