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ABSTRACT

In this paper, I explore finite fields which are fields with a finite number of elements. There are many
basic properties of these finite fields and perhaps one of the most important properties is that the order
of each of them is of the form pn where p is a prime and n is an integer. Ultimately, we prove that for
each p and n there is exactly one finite field with order pn up to isomorphism.
This theorem allows us prove that (mod pn) there are generators of F)pn× to look a little bit deeper
at roots of unity (mod p). We are able to derive formulas to characterize how many roots of unity
there are and what the roots of unity look like.
Then we introduce the Frobenius map and derive many applications of that map on the fields Fpn and
Fp[x]/(f) where f is some degree n polynomial.
After establishing the Frobenius map then we determine a condition necessary for Fpm to be contained
in Fpn . The second theorem that we prove using Frobenius maps relates to the number of irreducible
monic polynomials of degree n over a field Fpm .

Keywords Finite Fields

1 Classification of Finite Fields

We can start off with a few defintions. We already know that a field is defined as basically an abelian group with an
extra operation · where F× is an abelian group under this multiplication. The final property they have to satisfy is the
distributive property that a(b+ c) = ab+ ac.

Definition 1.1. The definition of a finite field is simply a field where the underlying set is finite.

Most fields that one thinks of are infinite (Q,Q[x],R). However, one clear set of finite fields are Fp which is essentially
Z/pZ with the standard multiplication operation.

Definition 1.2. The characteristic of a field K is the minimal n such that n := 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0. It is denoted

as char(K). Note that if no such n exists then char(K) = 0.

Proposition 1.3. The characteristic of a finite field is nonzero.

Proof. For any finite field K we see that if we consider 1, 1 + 1, 1 + 1 + 1, . . . then since K is finite, there must be
two terms of the sequence that are equal by Pigeonhole Principle. If 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸

a times

= 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
b times

= x.

Then consider 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
(a−b) times

= x− x = 0. This means that 0 < char(K) ≤ a− b. �

Proposition 1.4. The characteristic of any field is 0 or a prime.
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Proof. First note that since 1 6= 0 then char(K) 6= 1. Thus, if char(K) > 0, then we will show that char(K) is prime.
Assume that char(K) = ab where a, b > 1. Then notice that by the distributive property,

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ab times

=

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
a times

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
b times

 = 0.

Then note that if xy = 0 for x, y ∈ K then if x 6= 0 we can multiply by x−1 on both sides to get that y = 0. This
means that one of 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸

a times

, 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
b times

is 0. However a < char(K) which means that char(K) is

not minimal. Thus char(K) is either 0 or a prime. �

This means that the characteristic of a finite field is always a prime.
Proposition 1.5. Any field with a prime characteristic p has Fp as a subfield.

Proof. Consider the subfield {0, 1, 1 + 1, 1 + 1 + 1, . . . , 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
(p−1) times

} The subfield has the same addition and

multiplication rules as Fp ∼= Z/pZ. �

Lemma 1.6. Any finite field has a prime power order.

Proof. Let char(K) = p. Then we know that Fp is a subfield. Since K is a field extension of Fp then consider
[K : Fp] = n and a basis for K: {e1, e2, . . . , en}. This means that K ∼= Fnp since we can map x = a1e1 + a2e2 +
· · ·+ anen ∈ K to (a1, a2, . . . , an) ∈ Fnp . Thus, |K| = |Fnp | = pn. �

To build up to a theorem which completely classifies all finite fields, we need to go a little bit more into algebraic
closures.
Definition 1.7. A field extension L/F is algebraic if for each a ∈ L, there exists a subfield of L, La which contains a
so that [La : F ] is finite.
Proposition 1.8. Given an algebraic extension K/F then for every α ∈ K, α is algebraic over F meaning that α is
the root of a monic polynomial in F [x].

Proof. Define Kα to be a subfield of K which contains α and is finite over F . Let the [Kα : F ] = n. Then
if we consider 1, α, α2, . . . , αn then this set must be linearly dependent. Thus there exists c0, c1, . . . , cn, so that
c0 + c1α + · · · + cnα

n = 0 and then dividing by cn gives us the monic polynomial that we need. Thus α is
algebraic. �

Definition 1.9. A field F is algebraically closed if the only finite field extension of F is an isomorphism.
Proposition 1.10. F is algebraically closed if and only if every monic irreducible polynomial over F has degree 1.

Proof. We will prove the only if first. Assume F is algebraically closed. Then we consider the field F [x]/(f) where
f is a monic irreducible polynomial. Define this field F [x]/(f) as F [x] mod the equivalence relation ∼ where
g ∼ h if and only if f | g − h. This field clearly satisfies the addition and multiplication properties and to find the
inverse we see that for any g ∈ F [x] then we can use the Euclidean Algorithm to find the inverse of g. Note that
F ⊆ F [x]/(f) because F [x]/(f) constant all of the constant polynomials. However, since F is algebraically closed
then any extension of F , F ∼= F [x]/(f) −→ dimF (F [x]/(f)) = 1. But also note that if n = deg(f), then xn ≡ g(x)
(mod f) for some polynomial g(x) which degree less than n. Thus, (1, x, . . . , xn−1) is a basis of F [x]/(f) over F .
Thus deg(f) = dimF (F [x]/(f)) = 1.
Note that because this relation holds then it means that we can factor any polynomial in F [x] into linear factors.

To prove the second part we assume that F is not algebraically closed. Then we can take some finite exten-
sion K which is not isomorphic to F . Now we want to show that there exists an irreducible polynomial with degree
higher than 1. Take some y ∈ K − F . We are going to find a monic irreducible polynomial in F such that f(y) = 0.
Because K is a finite extension of F then we know that it is algebraic. This is important because then by Proposition
1.8 then we can construct a minimal polynomial with y as a root. However, because yF , then this polynomial has a to
have a degree of more than 1. Thus if F is algebraically closed then every monic irreducible polynomial over F has
degree 1. �
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Definition 1.11. A field K is the algebraic closure of a field K if [K : K] is finite and K is algebraically closed.

Note that if L/K is an algebraic extension of K then an algebraic closure L of L is also an algebraic closure of K
since [L : K] = [L : L][L : K] is finite.
Theorem 1.12. Every finite field has order pn for some prime p and a nonnegative integer n. For each p and n there is
a field Fpn which has order pn and is unique up to isomorphism.

Proof. The first part of this theorem is true because of Lemma 1.6.

Now for the second part of the theorem, we first need to consider the algebraic closure of Fp, Fp. Then we
can define Fpn := {x ∈ Fp | xp

n − x = 0}. Then note that this satisfies all of the properties of a field.

It satisfies the addition property since xp
n

+ yp
n ≡

(
xp

n−1

+ yp
n−1
)p
≡ · · · ≡ (x+ y)p

n ∈ Fpn .

It satisfies the multiplication property since xp
n

yp
n

= (xy)p
n ∈ Fpn .

It satisfies the inverse property since for any nonzero x, (x−1)p
n

=
(
xp

n)−1
= x−1 ∈ Fpn .

Finally we inherent the distributive and commutative property from Fp. Now we need to prove that |Fpn | = pn.
Consider f(x) = xp

n − x. Then since f(x) ∈ Fp which is algebraically closed then it means that f(x) factors into pn
linear factors. Now we just need to know that none of these linear factors repeat. To show this we take the derivative of
f(x) and we get that f ′(x) = pnxp

n−1 − 1 so for every value of x, f ′(x) = −1 6= 0. Thus there are no repeated roots
meaning that |Fpn | = pn.

Now we need to prove that Fpn is unique up to isomorphism. For this assume that there is another field K

which has order pn. Since K is finite it is thus algebraic over Fp. Thus if we done an algebraic closure of K as Fp
then that is also an algebraic closure of Fp. Consider a field homomorphism φ : K → Fp. It suffices to show that
imφ ⊆ Fpn ⊆ Fp since φ is injective meaning that |K| ≥ pn but also |K| ≤ |Fpn | = pn.
Now to show that imφ ⊆ Fpn . We need to show that for all x ∈ K, φ(x)p

n

= φ(x) which is essentially showing that
xp

n

= x. This clearly holds for x = 0 so we only need to consider x ∈ K×. But since x 6= 0 then we just need to show
that xp

n−1 = 1. Since |K×| = pn − 1, we can use Lagrange’s Theorem on K× as a group to see that the order of
every element in K× divides pn − 1. This means that xp

n−1 = 1 so we are done. �

2 Roots of Unity (mod p)

First we can prove a proposition about F×p .

Proposition 2.1. F×pn ∼= Z/(pn − 1)Z

Proof. To show that F×pn is cyclic we need to find an element with order pn − 1.
We know by the Fundamental Theorem of Finite Abelian Groups that F×pn ∼=

∏
i Z/p

ai
i Z. Note that if each of the pi’s

are distinct then we can see that (1, 1, . . . , 1) would be an element of order
∏
i p
ai
i .

Now assume that for r 6= s, pr = ps and ar ≥ as. Then we can essentially say that F×pn ∼=
∏
i 6=s Z/p

ai
i Z since for any

x ∈ F×pn , x (mod pass ) is determined by x (mod parr ). This means that we can continue to eliminate primes which are
equal until we have a set of distinct primes such that F×pn ∼=

∏
j Z/p

aj
j Z where the set of j’s is a subset of the set of i’s.

Then we see that (1, 1, . . . , 1) is an element of maximal order m =
∏
j p

aj
j < |F×pn |. However if such an m existed

where xm = 1 for all x ∈ F×pn , then the polynomial xm − 1 has a maximum of m roots in Fp. Thus there is some
element of F×pn which has order pn − 1. Thus F×pn is cyclic so F×pn ∼= Z/(pn − 1)Z. �

From this proposition we can draw the conclusion that there are generators of Fpn . This has a a couple implications.
Corollary 2.2. The number of n-th roots of unity (mod p) is gcd(n, p− 1). The roots of unity are the solutions to
xn ≡ 1 (mod p).

Proof. We can see this as if we let g be the generator of F×p . Then we can represent any element of F×p as x = gy where
y is between 0 and p− 1. Then we get that xn = gny . Thus we know that for xn = 1, p− 1 | ny. If d = gcd(n, p− 1)

then we just need p−1
d | (

n
d )y. Since gcd(p−1d , nd ) = 1, then we see that p−1d | y. Thus y = (p−1)a

d where a ∈ Z. Since
0 ≤ y < p− 1, then we get that 0 ≤ a < d meaning there are d solutions. �
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This also means that for the polynomial xn − 1 to have n solutions in Fp, gcd(n, p− 1) = n =⇒ n | p− 1.

The proposition can also be used to prove Wilson’s theorem if you let consider (p− 1)! ≡
∏p−2
i=0 g

i (mod p) where g
is a generator of F×p . Thus

(p− 1)! ≡ g1+2+···+(p−2) ≡ g(p−2)(p−1)/2 ≡
(
g

p−1
2

)p−2
≡ (−1)p−2 ≡ −1 (mod p)

3 Frobenius Maps

Before we go into Frobenius Maps we should first establish that Fpn is Galois over Fp. This is because Fpn is the
splitting field of xp

n − x and thus it is normal. It is also separable which means that Fpn is Galois over Fp.
With this we can explore the Galois group Gal(Fpn/Fp).

Definition 3.1. The Frobenius map is defined as a function Frobp : Fpn → Fpn

Frobp(x) = xp

. We can verifty that this map is an isomorphism because

Frobp(x+ y) ≡ (x+ y)p ≡ xp + yp ≡ Frobp(x) + Frobp(y) (mod p)

Frobp(xy) ≡ (xy)p ≡ xpyp ≡ Frobp(x)Frobp(y) (mod p)

Now we are going to prove the following theorem through various smaller lemmas that explore the Frobenius map.

Theorem 3.2. First we will define Frob0p as the identity map. We will also define Frobap(x) = xpa.

Gal(Fpn/Fp) = {(Frobap | a ∈ Z, 0 ≤ a ≤ n− 1}

Proof. Let’s explore this theorem. There are some important lemmas that we need to use.

Lemma 3.3. Any one of these Frobenius maps: Frobap fixes Fp.

Proof. We first have to consider Frobp(x) = xp. By Fermat’s Little Theorem, we know that xp ≡ x (mod p). Thus,
the Frobenius map fixes Fp.
We can also extend this to say that xpa ≡ x (mod p). Thus Frobap fixes Fp. This means that Frobap ∈ Gal(Fpn/Fp). �

Lemma 3.4. These Frobap’s are distinct as maps Fpn → Fpn .

Proof. We wish to show that Frobrp 6= Frobsp for 0 ≤ r < s ≤ n− 1. We can compose Frobsp with Frob−rp to get that
Frobs−rp is not the identity. The restriction on s− r is 0 ≤ s− r ≤ n− 1. Thus, if we define t = s− r, then it suffices
to show that Frobtp 6= Frob0

p for 0 ≤ t ≤ n− 1.
Thus to show that Frobtp is not the identity, then we have to show that there is a x ∈ Fpn so that xp

t 6= x. This is not
hard to show since xp

t − x is a polynomial with degree pt ≤ |Fpn | = pn. Thus, xp
t − x cannot be 0 over all x ∈ Fpn

so each Frobap is a distinct automorphism that fixes Fp. �

Lemma 3.5. We need is that we can express Fpn in the form Fp[x]/(f) for f ∈ Fp[x] of degree n.

Proof. We already established through Proposition 2.1 that there is a generator g of F×pn . We also know that by
Proposition 1.8, since Fpn is an algebraic extension of Fp, then g satisfies some irreducible monic polynomial f over
Fp. Then we can consider a a map φ : Fp[x]/(f)→ Fpn

x 7→ g

This map is necessarily injective because it is a field homomorphism. Since g is a generator of F×pn and φ(0) = 0, then
φ is also surjective.
Thus φ is an isomorphism. It follows that deg(f) = n because since [Fp[x]/(f) : Fp] = deg(f). Insofar as
Fp[x]/(f) ∼= Fpn and [Fpn : Fp] = n then we can see that [Fpn : Fp] = [Fp[x]/(f) : Fp] = n =⇒ deg(f) = n. �
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Finally we can piece all of these lemmas together to prove the theorem. By Lemma 3.3, then all Frobap are in
Gal(Fpn/Fp). Then by Lemma 3.4 we know that each of these Frobap, 0 ≤ a ≤ n− 1 are distinct so we have at least n
distinct elements of Gal(Fpn/Fp).
Then finally by Lemma 3.5 we have that Fp[x]/(f) ∼= Fpn . Thus any map Fpn → Fpn will be the same as a map
Fp[x]/(f) → Fpn . However a map from Fp[x]/(f) to Fpn will have to send x to a root of f . Thus, there are at
maximum deg(f) = n possible maps Fp[x]/(f) → Fpn . It follows that Aut(Fpn) ≤ n. Since we already have n
elements of Aut(Fpn) ≤ n: {(Frobap | a ∈ Z, 0 ≤ a ≤ n− 1} Thus we are done,

Gal(Fpn/Fp) = {(Frobap | a ∈ Z, 0 ≤ a ≤ n− 1}
�

4 Two Important Theorems

There are two important conclusions which we can draw from the Frobenius map: Theorem 4.1 and Theorem 4.2.
Theorem 4.1. For a prime p and m,n > 0, we have Fpm ⊆ Fpn if and only if m | n.

Proof. First we should consider what happens if m | n. We know that Fpm is the set of elements of Fp for which
xp

m

= x and Fpn is the set of elements of Fp for which xp
n

= x. If n = md, then

xp
n

= xp
md

=
(
xp

m(d−1)
)p

= xp
m(d−1)

= · · · = xp
m

= x

Thus if x ∈ Fpm then x ∈ Fpn .

Now if Fpm ⊆ Fpn , then Fpn is a vector space over Fpm . Let us say that [Fpn : Fpm ] = d. Then

|Fpn | = |Fpm |d ⇐⇒ pn = (pm)
d

=⇒ m | d
. �

The proof of the following theorem uses Frobenius Maps ot count the number of irreducible monic polynomials in a
finite field Fpm of a specific degree.
Theorem 4.2. The number of irreducible monic polynomials of degree n over a field Fpm represented by Nn is given
by the equation

n ·Nn =
∑
d|n

µ(d)qn/d

Where q = pm and µ(n) =


1 if n is squarefree and has an even number of prime divisors
−1 if n is squarefree and has an odd number of prime divsors
0 if n has a squared prime factor

.

Proof. To prove this we should first establish what the Frobenius map looks like over the field F = Fq = Fpm . Given
some finite field extension K = Fqn then the Frobenius operator can be defined as Φ = Frobq : K → K where
Φ(x) = xq . It is fairly clear that Φ is a valid isomorphism similar to what we did for the Frobp operator. It can also be
shown that the Φ operator follows all of the lemmas that we established in section 3. Now we will prove the following
lemma.

Lemma 4.3. For k ∈ K, there is exactly one monic irreducible polynomial p ∈ F [x] which has k as a root and this
polynomial is given by

p(x) = (x− k)(x− Φ(k))(x− Φ2(k)) . . . (x− Φd−1(k))

Where Φc(k) = Φ ◦ Φ · · · ◦ Φ︸ ︷︷ ︸
c times

(k) and d is the smallest positive integer such that Φd(k) = k.

Proof. First we have to note that by Pigeonhole principle since K is finite, there are some 0 ≤ i < j so that
Φi(k) = Φj(k). Thus we get that Φj−i(k) = k meaning that such a d exists which is less than or equal to j − i. Now
consider p(x) = (x− k)(x− Φ(k))(x− Φ2(k)) . . . (x− Φd−1(k)). We know that p(x) is at least in K[x]. But if we
take Φ(p(x)) then we see that

Φ(p(x)) = Φ(x− k)Φ(x−Φ(k)) . . .Φ(x−Φd−1(k)) = (Φ(x)− k)(Φ(x)−Φ(k) . . . (Φ(x)−Φd−1(k)) = p(Φ(x))
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Thus for x ∈ F , Φ(p(x)) = p(x). However Φ(p(x)) can also be seen as Φ acting on each of the coefficients of p.
However, if Φ(p(x)) = p(x) then that means that each of the coefficients must be in F so p(x) ∈ F [x]. �

Lemma 4.4. Let p be an irreducible monic polynomial of degree d with d dividing the degree n of an irreducible
polynomial q. Then p(x) has d distinct roots in F [x]/(q).

Proof. Consider L = F [x]/(p) ∼= Fpmd . Let k be a generator of F×
pmd which is what x maps to in the isomorphism

from F [x]/(p) to Fpmd . We know that p(k) = 0 and p(x) = (x − k)(x − Φ(k))(x − Φ2(k)) . . . (x − Φd−1(k)) by
Lemma 4.3 where Φ is defined as the Frobenius automorphism of K = F [x]/(q) over F .
By Lagrange’s Theorem kq

d−1 = 1 =⇒ p(x) | xqd−1 − 1. But now we can also consider g to be the generator of
K× = F×qmn where gq

n−1 = 1. Then {1, g, g2, . . . gqn−2} are all the roots of the polynomial xq
n−1 − 1. Then we can

see that
qd − 1 | qn − 1 =⇒ xq

d−1 − 1 | xq
n−1 − 1 =⇒ p(x) | xq

n−1 − 1

Thus, p(x) has d roots in K since xq
n−1 − 1 factors into linear factors over K[x]. �

Now to finally complete this proof we are going to count |K| = qn. We can group them in d-tuples of roots of elements
of irreducible monic polynomials in F [x] where d goes over all positive divisors of n. Then this grouping gives us
another way to count |K| as

|K| = qn =
∑
d|n

d ·Nd

Then we can use Mobius inversion which is essentially inclusion and exclusion which says that g(n) =
∑
d|n f(d)⇐⇒

f(n) =
∑
d|n µ(d)g(nd ). Thus applying Mobius inversion where g(n) = qn and f(n) = n ·Nn, we get

n ·Nn =
∑
d|n

µ(d)qn/d

�
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