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Abstract. We will first discuss the question of which integers n have exactly
one group of order n, namely the cyclic group Z{nZ. We will see that these
are the integers that are relatively prime to the Euler totient function φpnq.
Then we discuss how many groups there are of order p3 for each prime p. We
end with a couple of interesting results and conjectures pertaining to groups
of squarefree order.

1 Introduction

One of the first things we learn in abstract algebra is the notion of a cyclic group. For
every positive integer n, we have the cyclic group Z{nZ, the group of integers modulo n.
When n is prime, a simple application of Lagrange’s theorem yields that this is the only
group of order n. We may ask ourselves: what other positive integers have this property?
That is, for which positive integers n is every group of order n cyclic?

This is not a new problem; the first solution is attributed to Burnside and has appeared
in numerous papers. Dickson [4] determined in 1905 those n for which all groups of order
n are abelian. The earliest proof focusing specifically on n for which all groups of order
n are cyclic (not just abelian) was given by Szele [7] in 1947.

Definition 1.1. For n P N let fpnq denote the number of (isomorphism classes of) groups
of order n.

Question. Is there a good characterization of n such that fpnq “ 1?

Considering fpnq for small values of n we see that fp2q “ fp3q “ 1 because 2, 3 are
primes. However, for n “ 4 already we have fp4q ą 1.

Example. Z{4Z and Z{2Z ˆ Z{2Z are non-isomorphic: they have different maximal
orders for their elements: 4, and 2 respectively. In general, fpp2q ą 1 because Z{pZˆZ{pZ
has p2 elements, has no element of order p2, and is therefore not cyclic.

More generally, if p2 � n for some prime p, and if m “ n{p2, then fpnq ą 1 because

Z{p2Zˆ Z{mZ, and Z{pZˆ Z{pZˆ Z{mZ

are non-isomorphic groups of order n. Thus, at the very least we need n to be squarefree.

Definition 1.2. Integers that are divisible by no perfect square other than 1 are called
squarefree integers. For example, 10 “ 2 ¨ 5 is squarefree, but 18 “ 2 ¨ 32 is not.

Observation 1.3. If fpnq “ 1 then n must be squarefree.

However, the converse is false, since fp6q “ 2.
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Example (The dihedral group D3). D3 has 6 elements and is generated by the two
elements tρ, τu where ρ is counterclockwise rotation by 2π{3, and τ is the reflection
across the line y “ 0. Moreover, we have the relation ρτ “ τρ´1, so D3 is not abelian.

In general, for any integer n ą 1, the dihedral group Dn has 2n elements, and is
generated by tρ, τu with ρτ “ τρ´1. Thus Dn is not abelian, and fp2nq ą 1. Thus, we
get

Observation 1.4. If fpnq “ 1, then either n “ 2 or n must be a squarefree odd integer.

Once again, the converse is false, since fp21q “ 2. This time, however, the reason is
not so obvious. It is not straightforward to come up with a group of order 21 that is not
isomorphic to Z{21Z. We need to introduce the notion of a semidirect product of groups.

2 The Semidirect Product

We start with a definition:

Definition 2.1. Let H and K be groups and let ψ : K Ñ AutpHq be a homomorphism.
Let G “ tph, kq : h P H and k P Ku. Define multiplication on G by

ph1, k1qph2, k2q “ ph1ψpk1qph2q, k1k2q.

This multiplication makes G a group of order |G| “ |K||H|, where the identity of G is
peH , eKq, and ph, kq´1 “ pψpk´1qph´1q, k´1q is the inverse of ph, kq. The group G is called
the semidirect product of H and K with respect to ψ (denoted by H ¸ψ K).

Remark (The semidirect product is the direct product if the homomorphism ψ is trivial).
Suppose H and K are groups and ψ : K Ñ AutpHq is the trivial homomorphism, i.e.
ψpkq “ id, for all k P K. Then

ph1, k1qph2, k2q “ ph1 ¨ ψpk1qph2q, k1k2q “ ph1h2, k1k2q.

Hence H ¸ψ K – H ˆK.

The set of automorphisms of a group plays a central role in the study of semidirect
products. The semidirect product is distinct from the direct product only if there is
some non-trivial homomorphism ψ : K Ñ AutpHq, which only happens if |K| divides
|AutpHq|. Let us remind ourselves how to compute |AutpHq| when H is a cyclic group.

Proposition 2.2. AutpZ{nZq – pZ{nZqˆ and this is an abelian group of order φpnq.

Proof. See Problem 7, Chapter 5, of the textbook [6].

The way we will be using semidirect products is by showing that for some values of
n, there is a group of order n that is isomorphic to a semidirect product of some two of
its subgroups. The following proposition makes this idea concrete.
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Proposition 2.3. Suppose H and K are subgroups of group G such that HCG, HXK “

teu, and |G| “ |H| ¨ |K|. Then G – H ¸ψ K for some ψ : K Ñ AutpHq.

Note: When this happens, K is said to be a complement of H in G.

We can now understand why fp21q “ 2. This is because 21 “ 3 ¨ 7 and 3 � p7´ 1q.

Example (Groups of order pq with p ” 1 pmod qq). Let G be a group of order pq where
p ą q are distinct primes. Then there is only one Sylow p-subgroup P , which is therefore
normal. Let Q be a Sylow q-subgroup. Then Q is a complement of P in G, so G is a semi-
direct product P ¸ψQ, for some homomorphism ψ : QÑ AutpP q. Since q � pp´ 1q, then
AutpP q – AutpZ{pZq has a unique subgroup of order q, and ψ can be an isomorphism
from Z{qZ to this subgroup. We can choose a generator for Z{qZ to map to a specified
element of order q in AutpZ{pZq. So there is, up to isomorphism, a unique semi-direct
product which is not a direct product. In other words, the number of groups of order pq
(up to isomorphism) is 2 if q � pp´ 1q, and 1 otherwise.

We can gather all these observations into one useful lemma.

Lemma 2.4. If n “ pq where p � pq ´ 1q then there exists a semidirect product of the
cyclic group of order p and the cyclic group of order q. In particular, fpnq “ 2.

Proof. Example above.

It is easy to see that this can, in fact, be extended to any squarefree integer n.

Proposition 2.5. If n “ p1p2 ¨ ¨ ¨ pk where the pi are distinct primes and pi � ppj ´ 1q for
some i ‰ j, then fpnq ą 1.

Proof. If n “ pqm where p � pq ´ 1q and gcdppq,mq “ 1, then there is a (nontrivial)
semidirect product Z{pZ¸ψ Z{qZ and therefore pZ{pZ¸ψ Z{qZq ˆ Z{mZ and Z{nZ are
non-isomorphic groups of order n.

This concludes our discussion about semidirect products. We will be using it in crucial
ways throughout the rest of the discussion. We are now ready to state the answer to our
question.

3 The Main Theorem

At the end of Section 1 we concluded that it was enough to restrict our attention to the
odd, squarefree integers. In Section 2 we discovered that if n is squarefree and p � pq´ 1q
for some primes p, q dividing n, then we have a semidirect product in addition to the
cyclic group of order n. This is the same as saying that if fpnq “ 1 then gcdpn, φpnqq “ 1
where φpnq is the Euler totient-function.

Lemma 3.1. Let n be an integer. Then the following statements are equivalent:
(a) n “ p1p2 ¨ ¨ ¨ pk where the pi are distinct primes and pi ffl ppj ´ 1q for i ‰ j.
(b) gcdpn, φpnqq “ 1, where φ is the Euler φ-function.
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Proof. If n “ pa11 p
a2
2 ¨ ¨ ¨ p

ak
k then φpnq “ pa1´11 pa2´12 ¨ ¨ ¨ pak´1k pp1´1qpp2´1q ¨ ¨ ¨ ppk´1q.

Lemma 3.1 allows us to restate Proposition 2.5 as

Proposition 3.2. If fpnq “ 1 then gcdpn, φpnqq “ 1.

... and this time the converse also holds! We thus obtain a tidy classification for
integers n such that there is exactly one group of order n.

Theorem 3.3. For a positive integer n, the only group of order n is the cyclic group
Z{nZ if and only if gcdpn, φpnqq “ 1, where φ denotes the Euler-phi function.

Proposition 3.2 proves that the condition is necessary. It will take us quite a bit
more work to prove that it is also sufficient. We will do so by first discovering that
groups of squarefree order satisfying the conditions of the theorem possess a couple of
“nice” properties, and then showing inductively that those properties force the group to
be cyclic.

4 Groups Of Squarefree Order

We will build our group inductively, out of its subgroups. But what kind of subgroups
should we look for? We have seen that abelian groups are one class of groups that
we largely understand; in fact we have a precise classification of all finite abelian groups.
Therefore we will try to decompose our group into abelian subgroups. Groups that permit
such a subdivision are the solvable groups, so our first step is to show that any group of
odd squarefree order is solvable.

Proposition 4.1. Let G be a group of order p1p2 . . . pk, where p1, p2, . . . , pk are distinct
primes. Then G is solvable.

Proof. We use induction on the number of primes, s, dividing n. If s “ 1, then G is a
cyclic group, hence solvable. Assume that the claim holds for s “ k i.e. every group of
order p1p2 . . . pk is solvable and suppose G is a group with |G| “ p1p2 . . . pkpk`1.

Since Sylow subgroups for different primes p have prime order, a simple counting
argument on the non-identity elements in each Sylow subgroup shows that some Sylow
subgroup must be normal in G. Suppose H is a normal Sylow pk`1-subgroup of G
(after reordering, if necessary). Then G{H is a group of order p1p2 ¨ ¨ ¨ pk. By induction
hypothesis G{H is solvable. The rest follows directly from the results of Problems 17, 18
of Chapter 5 of the textbook [6]: Since H is a cyclic subgroup of G, H is solvable. Since
H and G{H are solvable, therefore G is also solvable. This establishes the claim.

Proposition 4.1 guarantees that we have enough abelian subgroups inside G. Now we
have to find a way to take two of them of the right size and “glue” them together. The
way we imagine groups being built out of smaller pieces is that if G is a finite group and
HCG, then G is built out of H and G{H. Thus, we can break down a group into smaller
pieces if it has a nontrivial normal subgroup of the right index.
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Proposition 4.2. Let G be a group of order p1p2 . . . pk, where p1, p2, . . . , pk are distinct
primes. Then G has a normal subgroup of prime index.

We will need the notion of a commutator subgroup. In Problem 6, Chapter 3 of
the textbook [6], we learnt that the commutator subgroup rG,Gs of G is the subgroup
generated by all elements of the form rg, hs :“ ghg´1h´1. We also showed that G{rG,Gs
is always abelian. We will be using both these facts in the proof below.

Proof. By proposition 4.1, G is solvable, so commutator G1 “ rG,Gs is not equal to G.
Then G1 is either teu or a proper subgroup of G. If G1 “ teu, then G is abelian. Suppose
G1 is a proper subgroup of G. Then (after reordering, if necessary) |G1| “ p1p2 ¨ ¨ ¨ pj,
where 1 ď j ă k. So the quotient group G{G1 is an abelian group of order pj`1 ¨ ¨ ¨ pk.
Therefore by Cauchy’s theorem G{G1 has a normal subgroup H{G1 of order pj`1 ¨ ¨ ¨ pk´1.
Hence H is also a normal subgroup of G and |H| “ p1p2 ¨ ¨ ¨ pk´1, so rG : Hs “ pk.

Now we have everything we need to prove Theorem 3.3.

5 Proof Of Theorem

Proof of Theorem 3.3. Suppose gcdpn, φpnqq “ 1. Then n “ p1p2 ¨ pk for distinct primes
pi and pi ffl ppj ´ 1q for i ‰ j. We show that Z{nZ is the only group of order n. We use
induction on k, the number of prime factors of n.

If k “ 1 then n “ p1 i.e. n is a prime. Since every group of prime order is cyclic,
Z{nZ is the only group of order n. Assume that the result is true for k “ r i.e. for
n “ p1p2 ¨ ¨ ¨ pr, Z{nZ is the only group of order n. We will show that the result is true
for k “ r ` 1 i.e. for n “ p1p2 ¨ ¨ ¨ pr`1. Let G be a group of order n “ p1p2 ¨ ¨ ¨ pr`1.

By Proposition 4.2, G has a normal subgroup, H, of index pi for some i P t1, . . . , r`1u.
After reordering, if necessary, we can assume that H “ Z{mZ, where m “ p1p2 ¨ ¨ ¨ pr and
gcdpm,φpmqq “ 1. Take K “ Z{pr`1Z and consider the semi direct product of H and
K. It exists, because semi direct product of any two groups exist. Since H is a cyclic
group, so |AutpHq| “ pp1 ´ 1q ¨ ¨ ¨ ppr ´ 1q. Then any homomorphism from K to AutpHq
must be a trivial homomorphism, because otherwise it would contradict gcdpn, φpnqq “ 1.
Therefore the semi-direct product of H and K is actually just the direct product of H
and K, which is a cyclic group of order p1p2 ¨ ¨ ¨ pr`1. Since H is the only group of order
m, Z{nZ is the only group of order n “ p1p2 ¨ ¨ ¨ pr`1.

Those n, for which fpnq “ 1, are tabulated at http://oeis.org/A003277

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69,
71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131,
133, 137, 139, 141, 143, 145, 149, 151, 157, 159, 161, 163, 167, 173 . . .

This concludes our discussion of integers n such that there is exactly one group (up
to isomorphism) of order n. We now move on to explore how many groups there are of
order p3 for a given prime p.
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6 Groups of Order p3

For each prime p, we want to describe the groups of order p3 up to isomorphism.

This was done for p “ 2 by Cayley in 1854 and for odd p by Cole & Glover, Hölder,
and Young independently in 1893.

From the cyclic decomposition of finite abelian groups, there are three abelian groups
of order p3 up to isomorphism: Z{p3Z, Z{p2Zˆ Z{pZ, and Z{pZˆ Z{pZˆ Z{pZ. These
are nonisomorphic since they have different maximal orders for their elements: p3, p2,
and p respectively. There are two nonabelian groups of order p3 up to isomorphism. The
descriptions of these two groups will be different for p “ 2 and p ‰ 2.

Theorem 6.1. A nonabelian group of order 8 is isomorphic to D4 or to Q8.

Example (The Quarternion Group Q8). Q8 “ t1,´1, i, j, k,´i,´j,´ku is the group of
order 8 with the multiplication rules ´1 “ i2 “ j2 “ k2 “ ijk.
The element 1 represents the identity and p´1q2 “ 1 and ´1 is in the center (so p´1qi “
ip´1q “ ´i, p´1qj “ jp´1q “ ´j, etc.). Then Q8 has the following subsets:

t1u, t1,´1u, t1,´1, i,´iu, t1,´1, j,´ju, t1,´1, k,´ku, Q8

Every subgroup of Q8 is normal in Q8. We know that if G is an abelian group then
all subgroups of G are normal. However the group Q8 is non-abelian and yet all of its
subgroups are normal.

Theorem 6.2. For primes p ‰ 2, a nonabelian group of order p3 is isomorphic to
HeispZ{pZq or Gp.

HeispZ{pZq “

$

&

%

¨

˝

1 a b
0 1 c
0 0 1

˛

‚: a, b, c P Z{pZ

,

.

-

and

Gp “

"ˆ

a b
0 1

˙

: a, b P Z{p2Z, a ” 1 pmodpq

*

“

"ˆ

1` pm b
0 1

˙

: m, b P Z{p2Z
*

Keith Conrad [2] summarizes what is known about the count of groups of small p-
power order.

• There is one group of order p up to isomorphism (Z{pZ).

• There are two groups of order p2 up to isomorphism: Z{p2Z and Z{pZˆ Z{pZ.

• There are five groups of order p3 up to isomorphism, but the explicit description of
them is not uniform in p since the case p “ 2 needs a separate treatment.

For groups of order p4, the count is no longer uniform in p: there are 14 groups of order
24 and 15 groups of order p4 for p ‰ 2. This is due to Hölder and Young.
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7 Further Results and Conjectures

One of the first mathematicians to make advances in the enumeration of finite groups
was Otto Hölder. In 1893, he described groups of order p3 and p4. Shortly thereafter, he
derived a remarkable formula for the number of groups of order n when n is square-free.

Theorem 7.1 (Hölder, 1895). The number of groups of order n, where n is square-free
is given by

fpnq “
ÿ

m�n

ź

p

pcppq ´ 1

p´ 1

where p runs over all prime divisors of n{m and cppq is the number of prime divisors q
of m that satisfy q ” 1 pmod pq.

A natural question that arises from Hölder’s formula is: for n squarefree, can we
relate fpnq to n more explicitly? McIver and Neumann determined that fpnq ď n4 for n
square-free. An even better bound, is known: fpnq ď φpnq, where φ is Euler’s φ-function.
For squarefree n “ p1p2 ¨ ¨ ¨ pr and greater than 1, this last result implies that

fpnq ď φpnq “ pp1 ´ 1qpp2 ´ 1q ¨ ¨ ¨ ppr ´ 1q ă n.

Furthermore, if n is even and squarefree, then p1 “ 2 and

fpnq ď φpnq “ 1pp2 ´ 1q ¨ ¨ ¨ ppr ´ 1q ă
n

2
.

Another direction is to understand the asymptotic behavior of fpnq when n is square-
free. In this light, define

M :“ lim sup
nÑ8

log fpnq

log n

where the limit superior ranges just over squarefree integers n. Erdös, Murty, and Murty
have shown that M “ 1. Their proof uses Dirichlet’s Theorem on primes in arithmetic
progressions, among other techniques.

We mention one final, curious conjecture in the enumeration of finite groups:

Conjecture 7.2. The group enumeration function is surjective.

That is, for every positive integer m, the conjecture asserts that there exists n such
that fpnq “ m. This conjecture may well be resolved through consideration of squarefree
n, largely because of Hölder’s formula. Indeed, it has been verified that every m less than
10,000,000 is equal to fpnq for some squarefree n.
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