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1. Introduction

Classical Galois theory gives us the machinery to characterize the solutions of polyno-
mial equations (for example, the Abel-Ruffini Theorem states that there is no formula for
arbitrary polynomials of degree 5 or higher in terms of radicals). In this paper, we will in-
troduce differential Galois theory, which will allow us to characterize solutions of differential
equations. We will define differential fields and Picard-Vessiot extensions, and construct the
differential Galois group. We will also prove an analogue of the Galois correspondence for
Picard-Vessiot extensions, and a theorem that allows us to identify which functions are not
elementary integrable. This paper assumes knowledge of group theory, basic calculus, linear
algebra, and Galois theory.

2. Differential Fields

We begin by introducing a differential field, which is a field where we can take derivatives
of elements:

Definition 2.1. A differential field is a field K with char(K) = 0, endowed with a
derivation D : K → K such that

(1) D is additive, i.e. D(x+ y) = D(x) +D(y).
(2) D satisfies the product rule, i.e. D(xy) = xD(y) + yD(x).

We will sometimes denote D(x) as x′.

Example. The trivial derivation is D(x) = 0 for all x ∈ K. The field C(x) with the trivial
derivation would be an example of a differential field.

Example. The field of rational functions R(x), using the derivative we are familiar with, is
also an example of a differential field.

An important subfield of a differential field to consider is the kernel of the derivation:

Definition 2.2. Let CK = {x ∈ K : Dx = 0}. We call CK the field of constants.

Example. The field of constants of R(x) (with the usual derivation) would be R.

Now that we have a derivative, it is natural to consider linear differential equations:

Definition 2.3. Let K be a differential field. A linear differential equation over K is an
equation of the form anD

n(x) + · · · + a1D(x) + a0 = 0 for a0, a1, . . . , an ∈ K, where Di(x)
denotes the ith derivative of x. The roots of this equation are called the solutions. The
order of the equation is n.

Example. An example of a differential equation over Q is x′−3x = 0, which has order 1. An
example of a solution of this equation is e3x.
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Nonexample. The equation x′′ + (x′)2 + 2 = 0 over R(x) would not be an example of a
linear differential equation, because it is not in the form anD

n(x) + · · · + a1D(x) + a0 for
a0, a1, . . . , an ∈ K.

Definition 2.4. Let y1, y2, . . . , yn be elements of a differential field K. Define the Wron-
skian W (y1, y2, . . . , yn) as the determinant of the matrix

y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n


Example. We take K to be Q(x). Then, W (1, 2y2) = det

[
1 2y2

0 4y

]
= 4y.

Example. We can also come up with an example where the Wronskian is zero. Let K = Q(x)
again; we calculate W (y, 2y2, y2):

det

y 2y2 y2

1 4y 2y
0 4 2

 = y(8y − 8y)− 2y2(2− 0) + y2(4− 0) = 0.

Notice that in the first example, the elements are linearly independent and the Wronskian
is nonzero, whereas in the second example, the elements are linearly dependent and the
Wronskian is zero. The reason we care about this determinant is because of this property:

Proposition 2.5. W (y1, y2, . . . , yn) = 0 if and only if y1, y2, . . . yn are linearly dependent
over CK.

Proof. (⇐= ) Suppose the yi’s are linearly independent; then, there exist constants that are
not all 0 such that

∑n
i=1 ciyi = 0. Differentiating this equality gives us

n∑
i=1

ciy
(k)
i = 0, 0 ≤ k ≤ n− 1

This means that the columns of the matrix are linearly dependent, so the determinant
W (y1, y2, . . . , yn) = 0.

( =⇒ ) We want to show that if W (y1, y2, . . . , yn) = 0, then (y1, y2, . . . , yn) are linearly

dependent. If det(A) = 0, then there exist ci ∈ L which are not all 0, such that
∑n

i=1 ciy
(k)
i =

0 for all 0 ≤ k ≤ n− 1.
We can assume that c1 = 1 and W (y2, . . . , yn) 6= 0. If we differentiate the equality∑n
i=1 ciy

(k)
i = 0, we get

n∑
i=1

ciy
(k+1)
i +

n∑
i=1

c′iy
(k)
i = 0.

We know that
∑n

i=1 ciy
(k+1)
i = 0, so

∑n
i=1 c

′
iy

(k)
i = 0. But since W (y2, . . . , yn) 6= 0, by the

other direction of Proposition 2.5, we know that c′i = 0, i.e. the ci’s are constants. Taking
k = 0 gives us the relation

∑n
i=1 ciyi = 0, so the yi’s are linearly dependent.

�



DIFFERENTIAL GALOIS THEORY 3

3. Picard-Vessiot Theory and the Differential Galois Group

Recall that in classic Galois theory, we have splitting fields, where we adjoin all roots of a
polynomial to the base field F . In differential Galois theory, we have the following analogue
of the splitting field, where instead of adjoining all roots to a polynomial, we adjoin all
solutions of a differential equation:

Definition 3.1. Let L(y) be a differential equation of order n, over a differential field K.
A field extension L/K is a Picard-Vessiot extension if

(i) L = K(y1, y2, . . . yn), where y1, y2, . . . yn are solutions to L(y) = 0.
(ii) CL = CK , i.e. L has no constants that are not in K.

Definition 3.2. Let L be a Picard-Vessiot extension L/K. The differential Galois group
is the group of automorphisms σ of L that commute with the derivation, i.e. σ(x′) = (σ(x))′.
We denote this group by G(L/K) or Gal(L/K).

Example. We can construct a Picard-Vessiot extension from the solutions to a differential
equation. Let K = C(z), and consider the equation zy′′ + y′ = 0. The solutions to this
equation are k1 ln(z) + k2, where k1, k2 ∈ C. Then, the resulting extension E = C(z, ln z) is
Picard-Vessiot.

Recall that we define automorphisms of a field extension by where they map the generators.
An automorphism in the differential Galois group clearly needs to map z 7→ z, and it needs
to map a solution k1 ln(z) + k2 to another solution in the form k′1 ln(z) + k2. Thus, any σ
would be in the form of σ(ln(z)) = a ln(z) + b. Since the automorphism must commute with
the derivation, we compute σ(x′) and (σ(x))′:

σ

(
d

dz
ln(z)

)
= σ

(
1

z

)
=

1

z

(Note that σ
(
1
z

)
= 1

z
because 1

z
lies in the base field C(z)). We set this equal to

d

dz
σ(ln z) =

d

dz
(a ln z + b) =

a

z
so we can see that all automorphisms map ln z 7→ ln(z) + b, where b is a constant. This
means that the Galois group of E/K is the group of complex numbers under addition.

Recall that in classical Galois theory, we want the automorphisms in the Galois group
to fix the base field. We can show that this holds for Picard-Vessiot extensions with the
following proposition:

Proposition 3.3. Let K be a differential field with the field of constants CK algebraically
closed. Then the following hold:

(i) If L/K is a Picard–Vessiot extension, then there is σ ∈ Aut(L/K) such that σ(x) 6=
x.

(ii) Let M/L/K be a tower of field extensions such that L/K and M/K are Picard–
Vessiot. Then any σ ∈ Aut(L/K) can be extended to an automorphism of M .

Proof. We refer the reader to [CH11] Proposition 6.1.2 for a proof. �

This proposition has the following useful corollary:

Corollary 3.4. If L/K is a Picard-Vessiot extension, then LG(L/K) = K.
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4. The Zariski Topology

In this section, we define and discuss the Zariski topology, which is an important structure
used in the Galois correspondence. See [Mic19] for more detail, or for background on ideals
of rings.

Let F be a differential field with field of constants CK , and let K/F be a Picard-Vessiot
extension corresponding to an equation L. Any automorphism σ in the differential Galois
group G(K/F ) fixes elements of F , so it sends solutions of L to other solutions. This means
that we can think of G(K/F ) as a linear transformation of the solution space V represented
as a matrix M .

The advantage of thinking of G(K/F ) as a group of matrices is the following:

Proposition 4.1. The Galois group is isomorphic to a subgroup of GL(n,CK).

Example. Consider our previous example, with equation zy′′ + y′ = 0 and Picard-Vessiot
extension E(z, ln(z)) over C(z). Recall that the automorphisms were in the form of ln z 7→
ln z+a for a ∈ C. If we view the solution space, which is the set of all expressions in the form
k1 ln(z) + k2 for k1, k1 ∈ C, as a vector space over C, we can write down the automorphism
as the matrix

Ma =

[
1 a
0 1

]
Suppose we have two such matrices, for a1, a2 ∈ C. If we multiply them, we get

Ma1Ma2 =

[
1 a1
0 1

] [
1 a2
0 1

]
=

[
1 a1 + a2
0 1

]
Notice that this aligns with our definitions of the automorphisms: if we compose the map
ln(z) 7→ ln(z) + a1 with the map ln(z) + a2, then we get the map ln(z) 7→ ln(z) + a1 + a2,
which corresponds to the matrix above. In the case, the Galois group is isomorphic to the
group {[

1 a
0 1

]
: a ∈ C

}
≤ GL(2,C)

This allows us to endow the Galois group with the Zariski topology, which is an important
and useful structure on G(K/F ). We begin by defining a topological space.

Definition 4.2. A topological space is a set X together with a set τ of subsets of X
satisfying the following:

(i) The empty set and X are in τ .
(ii) Any arbitrary intersection (finite or infinite) of sets in τ is an element of τ .

(iii) Any finite union of sets in τ is an element of τ .

The subsets in τ are called the closed sets.

To define the Zariski topology, we need to define which sets are closed:

Definition 4.3. Let C be a field. A set is closed in the Zariski topology if it is of the
form V(S) = {x ∈ Cn : f(x) = 0∀f ∈ S} for some set S ⊆ C[x1, x2, . . . , xn].

It can be easily shown that the Zariski topology satisfies the properties above, i.e.:

Proposition 4.4. The Zariski topology satisfies the following:

(i) Cn = V(0),∅ = V(C[x1, x2, . . . , xn]).



DIFFERENTIAL GALOIS THEORY 5

(ii) If I and J are ideals of C[x1, x2, . . . , xn], then V(I) ∪ V(J) = V(IJ).
(iii) If {Iα} is a set of ideals in C[x1, x2, . . . , xn], then ∩αV(Iα) = V(

∑
α Iα).

Because the differential Galois group is isomorphic to a subgroup of GLn(C), it is endowed
with the Zariski topology.

5. The Galois Correspondence

Recall that in classical Galois theory, for a Galois extension K/F , we have a bijective cor-
respondence between intermediate fields and subgroups of the Galois group Gal(K/F ); and
that the normality of a subgroup of Gal(K/F ) gives us information about the corresponding
intermediate field. In differential Galois theory, we have the following analogue of the Galois
correspondence:

Theorem 5.1 (Picard–Vessiot). Let L/K be a Picard-Vessiot extension of degree n, and let
G(L/K) be the differential Galois group. Then the following hold:

(i) There is a bijective correspondence between Zariski closed subgroups H of G(L/K)
and intermediate fields F given by φ(F ) = G(F/K) with inverse ψ(H) = LH .

(ii) An intermediate field F satisfying K ⊂ F ⊂ L is a Picard-Vessiot extension of K iff
G(L/F ) is normal in G(L/K). Then, G(L/K)/G(L/F ) ∼= G(F/K).

Before we prove this theorem, we give a simple example of how this correspondence works:

Example. Take K = C(z), and consider the differential equation y′−y = 0. The solutions to
this differential equation are in the form kez, where k ∈ C, so the extension L = C(z, ez) is a
Picard-Vessiot extension. We can easily see that the automorphisms for L/K map ez 7→ aez,
where a ∈ C. Note that since the order is 1, the differential Galois group is just the entire
group GL(1,C). We can consider the subgroup of the roots of unity, which we denote as µn.
An automorphism σ(ez) = ζez sends ekz to σ(ez)k = ζkekz, so Lµn = C(z, enz).

We also have µn/G(L/K), and indeed, the intermediate field C(z, enz) is the Picard-Vessiot
extension corresponding to the differential equation y′ = ny.

Proof of Theorem 5.1, part (i). We follow the proof from [CH11].
We show that the maps φ ◦ ψ and ψ ◦ φ are the identity maps on the set of Zariski closed

subgroups of G(L/K) and the set of intermediate field between L and K, respectively. For
ψ ◦ φ, we have

ψ ◦ φ(F ) = ψ(G(F/K)) = LG(F/K)

which is just F by Corollary 3.4.
For φ◦ψ, we need to prove that LG(L/F ) = F for an intermediate field F . For H ≤ G(L/K),

let H ′ = G(L/LH). We show that H ′ is the Zariski closure of H in G, i.e. H ′ is the
smallest Zariski closed set containing H. Assume for contradiction that this is false, i.e. if
L = K〈y1, y2, . . . yn〉, there exists f on GL(n,CK) such that f = 0 on H but not on H ′

(remember that H and H ′ can be represented as subgroups of GL(n,CK).)
Let u1, u2, . . . un be variables. Consider the two matrices

A =


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

 , B =


u1 u2 · · · un
u′1 u′2 · · · u′n
...

...
. . .

...

u
(n−1)
1 u

(n−1)
2 · · · u

(n−1)
n


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where x(k) denotes the kth derivative of x. Recall from Proposition 2.5 that det(A) 6= 0,
since the yi’s are linearly independent. This means that A is invertible.

Let F (u1, u2, . . . un) = f(A−1B). We claim that

F (σ(y1), σ(y2), . . . , σ(yn)) = 0

for all σ ∈ H, but not all σ ∈ H ′. Let Mσ be a matrix representation of σ, i.e.

(σ(y1), σ(y2), . . . , σ(yn)) = (y1, y2, . . . , yn)Mσ

. Then, we compute B for (σ(y1), σ(y2), . . . , σ(yn)) (remember that σ commutes with the
derivation):

B =


σ(y1) σ(y2) · · · σ(yn)
σ(y1)

′ σ(y2)
′ · · · σ(yn)′

...
...

. . .
...

σ(y1)
(n−1) σ(y2)

(n−1) · · · σ(yn)(n−1)

 =


σ(y1) σ(y2) · · · σ(yn)
σ(y′1) σ(y′2) · · · σ(y′n)

...
...

. . .
...

σ(y
(n−1)
1 ) σ(y

(n−1)
2 ) · · · σ(y

(n−1)
n )


Since each row is now in the form of (σ(x1), σ(x2), . . . , σ(xn)), we can express this in terms
of Mσ:

=


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

Mσ = AMσ

We conclude that

F (σ(y1), σ(y2), . . . , σ(yn)) = f(A−1AMσ) = f(Mσ)

So by the definition of f , f(Mσ) = 0 for σ ∈ H, but not always for σ ∈ H ′.
We have now shown that there exists a polynomial F such that F (σ(y1), σ(y2), . . . , σ(yn))

is 0 for σ ∈ H, but not always for σ ∈ H ′. We can then take F to be the shortest such
polynomial (i.e., has the smallest number of terms) that satisfies this property. We will use
a minimality argument to show that F is 0 for all σ ∈ H ′, which will be our contradiction.

Let τ ∈ H, and let τF be the polynomial we get when we apply τ to the coefficients of F .
Then,

(τF )(σ(y1), σ(y2), . . . , σ(yn)) = τ(F (τ−1σ(y1), τ
−1σ(y2), . . . , τ

−1σ(yn)))

This is equal to 0 for all σ ∈ H because τ−1σ ∈ H. We can see that this quantity should
also be 0 for all σ ∈ H ′, or else we can find some a ∈ L such that G = F − a(F − τF )
is shorter than F , but still shares the property that G(σ(y1), σ(y2), . . . , σ(yn)) is 0 for all
σ ∈ H. Since F − τF = 0 for all τ ∈ H, we know the coefficients of F are invariant under
H.

Notice now that F has coefficients in LH . We defined H ′ to be G(L/LH), so

LH
′
= LG(L/LH) = LH

Thus, the coefficients of F are also invariant under H ′, and we have for σ ∈ H ′:

F (σ(y1), σ(y2), . . . , σ(yn)) = (σF )(σ(y1), σ(y2), . . . , σ(yn))



DIFFERENTIAL GALOIS THEORY 7

= σ(F (σ−1σ(y1), σ
−1σ(y2), . . . , σ

−1σ(yn))) = σ(F (y1, y2, . . . yn)) = 0

which is a contradiction to our statement that F (σ(y1), σ(y2), . . . , σ(yn)) is not 0 for all
σ ∈ H ′. This completes the proof of part (i). �

To prove the second part of the theorem, we first need the following lemmas:

Lemma 5.2. Let L/F/K be a tower of field extensions, and let G = Gal(L/K). Then, F
is G-stable, i.e. for σ ∈ G and a ∈ F , we have σa ∈ F.

Proof. See [CH11]Proposition 5.6.6 for a proof. �

Lemma 5.3. Suppose for some tower of field extensions L/F/K, F is G(L/K)-stable. Then,
G(L/F ) / G(L/K).

Proof. Let σ ∈ G(L/K) and τ ∈ G(L/F ). We want to show that σ−1τσ ∈ G(L/F ), i.e. for
a ∈ F , we have σ−1τσa = a. This is equivalent to τσa = σa. Since F is G(L/K)-stable,
σa ∈ F , and since τ ∈ G(L/F ), it fixes all elements in F . We conclude that σ−1τσa = a, so
G(L/F ) / G(L/K). �

Proof of Theorem 5.1, part (ii). ( =⇒ ) Let F be an intermediate field with L/F/K, and
suppose F is a Picard-Vessiot extension of K. Then, we show that G(L/F ) / G(L/K) and
G(L/K)/G(L/F ) ∼= G(F/K).

By Lemma 5.2, we know that F is G(L/K)-stable, so by Lemma 5.3, G(L/F ) / G(L/K).
To show G(L/K)/G(L/F ) ∼= G(F/K), let Φ : G(L/K) → G(F/K) map σ to σF , the
restriction of σ to F (we can do this because F is G(L/K)-stable).

Then, ker(Φ) is the set of automorphisms of L which fix F , so ker(Φ) = G(L/F ). Fur-
thermore, by Proposition 3.3 part (ii), im(Φ) = G(F/K). Thus, G(L/K)/ ker(Φ) ∼= im(Φ),
so G(L/K)/G(L/F ) ∼= G(F/K).

(⇐= ) See [CH11]Proposition 6.3.5 for a proof of the other direction, which is much more
difficult. �

6. Solutions of Differential Equations

In this section, we discuss the application of the Galois correspondence to solutions to
differential equations. To begin, we define Liouvillian extensions:

Definition 6.1. An extension of differential fields L/K is called Liouvillian if CL = CK
and there exist fields K = F1 ⊂ F2 ⊂ · · · ⊂ Fn = L such that for each i, Fi+1 = Fi(ti) is one
of the following:

(i) an extension by integral, i.e. t′i ∈ Ki

(ii) an extension by exponential, i.e. t′i/ti ∈ Ki

(iii) an algebraic extension, i.e. ti is algebraic over Ki

The notions of a Picard-Vessiot extension and a Liouvillian extension are actually quite dif-
ferent, in the sense that a Liouvillian extension is not necessarily a Picard-Vessiot extension.
An example of this is the differential field extension K(t, f)/K, where t is transcendental
over K and t′

t
∈ K×; and f is algebraic over K(t) with f 2 = 1 − t2. This field extension

is clearly Liouvillian, but turns out to not be a Picard-Vessiot extension; see [Wu] for an
explanation of this.
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The connection between Picard-Vessiot extensions and Liouvillian extensions can be de-
scribed by the differential Galois group. We first define the identity component of the
differential Galois group:

Definition 6.2. An irreducible component is a subset of a topological group that cannot
be written as the union of two proper closed subsets.

Definition 6.3. The identity component of a topological groupG is the unique irreducible
component containing the identity, as is denoted G0.

Proposition 6.4. G0 is a normal subgroup of G.

Proof. Note that for any x ∈ G, xG0x−1 is an irreducible component which contains e.
Since the identity component is the unique irreducible component containing the identity,
we conclude that xG0x−1 = G0. This means that G0 / G. �

It turns out that if L/K is a Picard-Vessiot extension, then there exists an intermediate
field F such that L/F is a Liouville extension, and F/K is a finite normal extension.

Theorem 6.5. Let K be a differential field with CK algebraically closed. Let L/K be a
Picard-Vessiot extension, and suppose the identity component of the differential Galois group
G0 is solvable. Then, L can be obtained from K by a finite normal extension followed by a
Liouville extension.

Proof. The idea of the proof is that G0 is a normal subgroup of G(L/K) with finite index (by

Proposition 6.4), so by the Galois correspondence, F = LG
0

is a finite normal extension. We
then have to show that L/F is a Liouville extension, which we can do using the Lie-Kolchin
Theorem from representation theory. We refer the reader to [CH11]Theorem 6.5.2 for more
details. �

We can actually prove something even stronger:

Theorem 6.6 (Liouville). Let L/K be a Picard-Vessiot extension, and let G be the differ-
ential Galois group. The following are equivalent:

(1) G0 is a solvable group.
(2) L/K is Liouvillian.
(3) L is contained in a Liouvillian extension of K.

Proof. We refer the reader to [Wu] for a proof. �

Liouville extensions are useful because we can use them to characterize which elements of
a differentiable field are elementary integrable:

Theorem 6.7 (Liouville). Let K be a differential field, and let α ∈ K. Suppose E/K is a
Liouvillian extension, and there is y ∈ E with y′ = α. Then, there exist v, u1, u2, . . . um ∈ K
with ui 6= 0 for each i, and c1, c2, . . . cm ∈ CK such that

α = D(v) +
m∑
i=1

ci
u′i
ui

Proof. The full proof is out of the scope of this paper; we will give a very brief outline.
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Let E = K(t1, t2, . . . , tN); we use induction on N . The case of N = 0 is easy, since then
y ∈ K. Suppose the claim holds for some N > 0. Since E/K is a Liouvillian extension, we
have the following chain of intermediate fields:

K ⊂ K(t1) ⊂ K(t1, t2) ⊂ · · · ⊂ K(t1, t2, . . . , tN)

We can now apply the induction hypothesis to the field extension K(t1, t2, . . . , tN)/K(t1).
Then, we can express α as

α = D(v) +
m∑
i=1

ci
u′i
ui

but with v, u1, u2, . . . , um ∈ K(t1) instead of K. We know that t1 is either an algebraic
element, a logarithm, or an exponential, so the rest of the proof is to analyze each case and
use the properties of t1 to express α in the desired form. The casework is rather technical,
so we skip it; see [Ros72] for the full proof. �

A special case of this theorem gives us the following result:

Theorem 6.8. Let K be a differential field, and suppose that L/K is a field extension
satisfying CL = CK and L = K(eg) for some g ∈ K such that eg is transcendental over K.
Then, for f ∈ L, feg is elementary integrable iff there exists a ∈ E with f = a′ + ag′.

Proof. We refer the reader to [Con05] for a proof. �

Corollary 6.9. e−t
2

has no elementary antiderivative.

Proof. We take K = C(x), f = 1, and g = −x2 in Theorem 6.8, so a′ + ag′ = 1 for some
a ∈ C(x). If a = p

q
where gcd(p, q) = 1 and p, q are polynomials, then

qp′ − q′p
q2

+ 2
px

q
= 1

Rearranging this, we get

q − 2px− p′ = q′p

q

If we compare the left hand side and right hand side, we conclude that q | q′p. But we
assumed that gcd(q, p) = 1, so then we have q | q′. The only way this can happen is if q is
constant, so without loss of generality we can now assume that a = p for some polynomial p.
Then, if we consider the equation 1 = a′ + 2ax, we know that the right side has degree ≥ 1
in x, while the left side clearly has degree 0 in x. This is a contradiction, so we are done. �

For a more thorough characterization of solutions to differential equations using represen-
tation theory, we refer the reader to [Kam]. Basic background on representation theory can
be found in [EGH+11].
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