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1 Introduction

This paper is going to talk about Categories or Category Theory. Category
Theory is the way to classify collections of certain objects and the ways they
map to each other through mappings called morphisms. Some examples of
Categories can be Groups, Sets, Vector Spaces, etc and they each have their
own respective morphisms.

Definition 1. For a set of Objects to be considered a category they have to
follow 3 properties:

1. Morphisms: For every pair of Objects in a Category, there exists a set
of morphisms that maps one object to the other. This can be notated by
HOM(Obj1,Obj2). If there is a specific morphism you want to represent,
lets say called f, then we notate the morphism by f as f : Obj1 → Obj2.

2. Identity: For every Object, Obj, there is some identity morphism eObj
such that every Obj maps to itself or HOM(Obj,Obj) or f : Obj → Obj.

3. Composition: For every 3 Objects in C, there exists a composition from
Hom(Obj1,Obj2)×Hom(Obj2,Obj3) is HOM(Obj1,Obj3). If f : Obj1 →
Obj2 and g : Obj2 → Obj3, then (g ◦ f) : Obj1 → Obj3 is the composition
of f and g.

Example. An example of category is the Group. A group is a category whose
objects are groups, which we have covered extensively in class. The morphism
that maps one group to other is a group homomorphism, which we have also
already learned in class.

Definition 2. Relationships between different categories are called Functors
ad relationships between these Functors are called Natural Transformations. A
Covariant Functor between categories C1 and C2, denoted by F : C1 → C2,
consists of:

• for every object c in C1, there exists an F (c) in C2

• for every morphism f : c1 → c2 there is a morphism F (f) : F (c1)→ F (c2)
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and the Functor must satisfy two properties

• F (f ◦ g) = F (f) ◦ F (g) where f : c1 → c2 and g : c2 → c3

• F (ec) = eF (c) where ec is the identity morphism.

An isomorphism F : C1 → C2 is defined to be a functor F from C1 to C2 which
is a bijection on the set of arrows and objects. Another way to check if a functor
is isomorphic: a functor F : C1 → C2 is isomorphic if and only if there is a
functor G : C2 → C1 where F ◦G and G ◦ F equal the identity.

Other important terms to note: A functor F : C1 → C2 is full if for every
pair c, c′ of objects in C1 and every arrow g : Fc→ Fc′ of C2, there is an arrow
f : c→ c′ of C1 such that g = Ff .

A functor F : C1 → C2 is considered faithful when every pair c, c′ of ob-
jects in C1 and for every pair of parallel arrows f1, f2 : c → c′, the quality
Ff1 = Ff2 : c→ c′ would mean that f1 = f2

Definition 3. As explained earlier, one can consider the relationships between
functors as Natural Transformations:

• Given two functors F,G : C1 → C2 a natural transformation τ : F → G is
a function which assigns each object c ∈ C1 an arrow τc = τc : Fc→ Gc
of C2 so that every arrow f : c→ c′ in C creates a commutative diagram
as shown below.

c Fc Gc

c′ Fc′ Gc′

f

τc

Ff Gf

τc′

A natural transformation is also called a morphism of functors. If a nat-
ural transformation τ has an inverse for every τc in C2 then it is called a
natural equivalence or τ : F ∼= G

Now we branch off into hom-sets.

Definition 4. Given two objects c1, c2 in a category C the hom-set is defined as:

homc(c1, c2) = {f | f is an arrow s.t. f : c1 → c2 ∈ C}

consists of all arrows of the category with domain c1 and codomain c2. A cate-
gory can be defined using these hom-sets in the following properties:

1. a set of objects c1, c2, c3, ·

2. a function which takes each ordered pair (c1, c2) and applies a hom-set
hom(c1, c2)
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3. for each ordered triple < c1, c2, c3 > there exists a function:

hom(c1, c2)× hom(c2, c3)→ hom(c1, c3)

This is called composition and is denoted by < g, f >→ g ◦ f for g ∈
hom(c2, c3) and f ∈ hom(c1, c2).

4. For each object c, there is an element idc ∈ hom(c, c) which is called the
identity element of c.

5. If < g, f >6=< g′, f ′ > then hom(g, f) ∩ hom(g′, f ′) = ∅

With a couple more definitions we will be able to tackle Yonedas Lemma,
but first We need to define small sets and locally small categories.

Definition 5. A locally small category is a category for which all objects c1, c2
the hom class hom(c1, c2) is actualy a set called the hom-set which we defined
earlier.

A small category is a categories whose objects and hom classes are sets and
not classes.

Definition 6. Finally we define the covariant hom functor which is denoted
by: hA = Hom(A,−), where A is an object in a locally small category and the
functor maps to the category of sets, denoted by Set.

This functor takes an object X and maps it to Hom(A,X) and takes a mor-
phism f : X → Y and maps it to f ◦ − which would then map a morphism
g ∈ Hom(A,X) to f ◦ g. In other words we have the following:

1. hA(X)→ Hom(A,X)

2. hA(f) = hom(A, f) and hA(f)(g) = f ◦ g

Now we have everything we need to being Yoneda’s Lemma!

Lemma 1. (Yoneda’s Lemma) Let F be an arbitrary functor from C to Set. For
each object A ∈ C, the natural transformations Nat(hA, F ) ≡ Hom(Hom(A,−), F )
from hA to F are in a one to one correspondence with F(A) or

Hom(Hom(A,−), F ) ∼= F (A)

Proof. A natural transformation η from hA to F has a corresponding element
x in F(A) s.t. x = ηA(idA). This is the case as ηA : Hom(A,A)→ F (A) which
maps a morphism from A to A to an element in F(A). Since the morphism idA
lies in Hom(A,A) then the morphism idA is mapped to an element in F(A) asso-
ciated to η. This element corresponds to the image of idA under the morphism
ηA.
Similarly a given element a in F(A) has a corresponding natural transformation
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η(f) = F (f)(x). Take an element a ∈ F (A) which is then mapped to a natural
transformation

ηa : hA → F

whose morphism on an object X

ηa(X) : Hom(A,X)→ F (X)

can then be written as
ηa(X)(f) = F (f)(a)

where f is a morphism between any 2 objects f : X → Y . Since F is a functor
we have the following diagram

hA(X) F (X)

hA(Y ) F (Y )

ηX

haf Ff

ηY

which obviosuly commutes so therefore we have found a natural transforma-
tion η. Combining both of these steps we can see there is a bijection between
Nat(hA, F ) and F (A) through the map η → ηAidA.

Another special case of Yoneda’s lemma we have to consider is when the
second functor F is actually a hom-set functor lets say hB . Basically the new
statement becomes

Theorem 2. Nat(hA, hB) ∼= Hom(B,A). This implies natural transformations
between hom functors are bijective with morphisms of the respective objects.
Given a morphism f : B → A the associated natural transformation is denoted
by Hom(f,−).

Through the respective mappings of objects and morphism to their functors
and natural transformations we can define a new covariant functor called h−

which can be described as h− : C → SetC where SetC denotes the functor cate-
gory which is a category whose objects are functors from C to Set As a result,
this h− is actually fully faithful and can draw the conclusion that the category
C is really isomorphic or has a bijection to {hA | A ∈ C}.

Thus ends my expository paper on Category theory. I started off with basic
definitions and then built more and more definitions until the reader had enough
material to understand the proof to Yoneda’s Lemma.
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