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Abstract

First, we will define and explain the idea of a matrix Lie group and
how it is connected to the general linear group. Then we give examples
of several matrix Lie groups and describe their structure so the reader
has some familiarity with what matrix Lie groups look like. Then we will
define tangent spaces, the exponential map, and Lie algebras. We will
then prove a series of statements to try and demonstrate the connections
between these objects. I try to explain everything so only knowledge of
basic abstract algebra, basic calculus concepts, and some linear algebra is
required.

1 Introduction

We generally think of groups as describing the interactions of discrete elements.
However, the study of groups can also be extended to continuous sets. These are
called “Lie Groups.” Some of the more interesting Lie groups, including many
geometric transformations, can be represented with matrices. These are known
as matrix Lie groups, and are the easiest to study because of their concrete
representation.

Definition 1. A Lie group is, roughly speaking, a group with continuous
elements. The group operation is multiplication, which, along with inversion,
must be a smooth(infinitely differentiable) map.

Lie groups can be thought of as acting on manifolds in the same way that
familiar groups like Z/nZ act on sets. For this paper, the formal definition of a
manifold will not be necessary; just think of manifolds as continuous sets. An
example of a simple lie group is Rn under vector addition.

2 Matrix Lie Groups

Definition 2. Mn(C) is the set of n × n matrices with entries in C. Similarly,
Mn(R) is the set of n × n matrices with entries in R.
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Definition 3. The General linear group of degree n over a field F, denoted
GLn(F) is the group of invertible n×n matrices with entries in F. For example,
GLn(C) denotes the general linear group of n × n matrices with entries in C.

Definition 4. A matrix Lie group is any topologically closed subgroup of
GLn(C). By topologically closed, we mean that if a sequence of matrices (An)
in the matrix lie group G converges to a matrix A, then A must be in G or A
must not be invertible.

Convergence of a n × n matrix over C to a matrix M is the same as conver-

gence in Cn
2

; that is, the sequences of elements in each position in the matrix
must converge to the element in the same position in M . An example of a
subgroup of GLn(C) that is not topologically closed is GL2(Q). Consider the
sequence of matrices

(
1 0
0 1

) ,(
1 + 1

1!
0

0 1
) ,(

1 + 1
1!
+ 1

2!
0

0 1
) , . . .

All these matrices are elementary and have rational entries, so they are in
GL2(Q). This sequence converges to

(
e 0
0 1

)

which is invertible but not in GL2(Q).
Now let’s go over some matrix lie groups to gain some familiarity with them.

Definition 5. The special linear group, denoted SLn(F), is the set of n×n
matrices with entries in the field F that have determinant 1.

Proposition 1. SLn(C) and SLn(R) are matrix Lie groups.

Proof. Because any matrix A is invertible iff det(A) ≠ 0, because the determi-
nant is multiplicative, and because det(A−1) = 1

det(A) , these are both subgroups

of GLn(C). Since the determinant of an n × n matrix is a polynomial in n
variables, it is continuous, so any sequence of matrices with determinant 1 con-
verges to a matrix with determinant 1. Additionally, R and C are both complete.
Then any sequence of matrices in SLn(C) or SLn(R) will converge in that same
group. Thus, SLn(C) and SLn(R) are both matrix Lie groups.

Now we will introduce the orthogonal group.

Definition 6. The orthogonal group, O(n), is the set of all matrices A with
entries in R with A ⋅AT = I.

Geometrically, the orthogonal group is the set of all transformations that
preserve distance in Rn.

Definition 7. The special orthogonal group, SO(n), is a subgroup of O(n),
containing all orthogonal matrices over Rn with determinant 1.
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Geometrically, the special orthogonal group consists of transformations that
preserve distance as well as orientation. Proving O(n) and SO(n) are matrix
Lie groups is a simple exercise and is similar to the proof of proposition 1. Now
let’s look at the 2-dimensional case of the special orthogonal group.

Definition 8. SO(2) is the group of rotations in the plane; it is a special case
of the orthogonal group. SO(2) is a matrix Lie group, and is isomorphic to the
unit circle.

Rotating by an angle θ corresponds to left multiplication by the invertible
matrix

(
cos θ − sin θ
sin θ cos θ

) .

This can be easily verified using trigonometry.

3 Tangent Spaces

Now we will discuss tangent spaces, which are important in describing the re-
lation between matrix Lie groups and Lie algebras. Roughly speaking, tangent
spaces are to matrix lie groups as tangent lines are to curves in R2. To describe
tangent spaces, we must first define the notion of a path.

Definition 9. A path is a continuous map λ ∶ [0,1] → Mn(R). In this case,
it can be thought of as a n × n matrix where each entry ai,j(t) is a function
f ∶ [0,1]→ R.

Definition 10. A path is smooth if it is differentiable (i.e. the derivatives of
all the ai,j(t) exist).

Definition 11. The tangent vector of a smooth path A(t) at t is A′(t).
Define an equivalence relation on two smooth paths A(t) and B(t) both passing
through point P at t = 0 of a matrix lie group G such that A(t) and B(t) are
in the same equivalence class if A′(0) = B′(0). The set of all such equivalence
classes is the tangent space at point P, and is denoted TPG.

The tangent space at point P can be thought of as containing all possible
“velocities,” or directions to travel to, from point P . In this paper we will
only be talking about the tangent space at the identity, T1G. It turns out that
tangent spaces at different points are all isomorphic, so we use T1G as it is easier
to work with and because every group must have an identity element. From now
on,“tangent space” refers to T1G.

A useful tool in finding the tangent space of a Lie group is the exponential
map. The exponential map is the analogue of the exponential function in R for
matrix Lie groups.

Definition 12. The exponential map of a matrix A is defined as

eA = I +
A

1!
+
A2

2!
+
A3

3!
. . . .
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Properties of the matrix exponential:

1. e0 = I

2. eX
T

= (eX)T (where XT is the transpose of X)

3. eX
∗

= (eX)∗ (where X∗ is the conjugate transpose of X)

Proposition 2. eA+B = eAeB

This follows from expanding the power series of the left and right side of the
equation. We can use the exponential map to find the tangent space of some
Lie algebras, because it explicitly gives us a smooth path with a derivative that
is easy to compute. Let’s start with the general linear group.

Proposition 3. The tangent space of GLn(R) is Mn(R).

Proof. Consider any matrix X ∈ Mn(R). Consider the path A(t) = etX . Since

e−tX = A(t)
−1

for all t, this path is in GLn(R). Then since this path has tangent
vector Xe0 = X at the identity, we have that Mn(R) is a subset of the tangent
space. We also know that the tangent space must be a subset of Mn(R) as the
image of any path is Mn(R). Then we have that the tangent space of Gln(R)

is MnR).

Definition 13. A skew-symmetric matrix is a matrix A such that A+AT = 0.

Proposition 4. The tangent space of O(n) is the set of all real skew-symmetric
matrices.

Proof. Consider the path t→ etX for any real skew-symmetric matrix X. Then
this path is in O(n) since

etX(etX)
T
= etXetXT

= et(X+XT )
= I.

Then the tangent vector at 0, which is X, is in the tangent space, and X must
be skew-symmetric for etX to be in O(n) for any T . Thus, T1O(n) is simply
the set of real skew-symmetric matrices.

Proposition 5. The tangent space of SO(n) is the same as the tangent space
of O(n).

Proof. To prove this, we show that any smooth path passing through the identity
in O(n) is also in SO(n). Let c(t) be such a path in O(n). Then since it
passes through the identity, which has determinant 1, every other point on the
path must also have determinant 1 as the determinant is continuous and the
only possible determinants in O(n) are ±1. But since all these points have
determinant 1 and are in O(n), they are also in SO(n) by its definition. Thus,
the set of smooth paths passing through the identity is the same in both groups,
so they have the same tangent vectors at the identity.
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4 Lie Algebras

Now we will introduce Lie Algebras.

Definition 14. A Lie Algebra is a vector space g equipped with an operation
[⋅, ⋅] ∶ g×g→ g called the Lie Bracket. The operation must satisfy the following:

• It is bilinear.

• [x,x] = 0, or equivalently [x, y] = −[y, x] for all x, y ∈ g

• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

The second condition is known as skew-symmetry and the third is the Jacobi
identity.

At first glance, the association between Lie Algebras and Lie Groups seems
unclear. This is where we bring tangent spaces back into the discussion: it turns
out the tangent space of a Lie group is a Lie algebra of the group.

Proposition 6. T1G, where G is a matrix Lie group, is a vector space.

Proof. We know by the definition of a path that any tangent vector must be
a n × n matrix over R. So T1G ⊂ Mn(R), which means we only need to prove
that T1G is closed under addition and scalar multiplication since Mn(R) is a
vector space. To show the tangent space is closed under addition, consider any
two smooth paths A(t) and B(t) such that A(0) = B(0) = 1. Then A′(0) and
B′(0) are tangent vectors in T1G. Consider C(t) = A(t)B(t). Since A and B
are smooth, C must also be smooth. Furthermore, C(0) = A(0)B(0) = 1, so
the tangent vector C ′(0) is in T1G. By the product rule, C ′(0) = A′(0)B(0) +
A(0)B′(0) = A′(0)+B′(0). Thus, the sum of any two tangent vectors in T1G is
also in T1G, so T1G is closed under addition. Also, for any r ∈ R, D(t) = A(rt)
is a smooth path that starts at the identity with D′(t) = A′(rt) = rA′(t) by the
chain rule. Thus, the tangent space is closed under scalar multiplication as well,
so it is a vector space.

Proposition 7. Mn(C) is a Lie algebra under the Lie Bracket [A,B] = AB−BA
(this is the standard Lie bracket, known as the commutator bracket).

Proof. This is left as an exercise to the reader. The proof just amounts to
checking the commutator bracket satisfies the Jacobi Identity and is skew-
symmetric.

Theorem 1. The tangent space equipped with the commutator bracket is a
Lie algebra.

Proof. Since T1G ⊂ Mn(C), we only need to prove that it is closed under the
Lie bracket in proposition 2, and it automatically satisfies the requirements of
the Lie bracket (this is similar reasoning as to how we prove a subset of a vector
space is a vector subspace).
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Consider any two elements X and Y in T1G. Then there are paths A(t) and
B(t) such that A(0) = B(0) = I and A′(0) = X,B′(0) = Y. Consider the path
A(t)Y A(t)−1. This is a smooth path so its tangent vector must be in T1(G).
So we have

A′
(0)Y A(0)−1 +A(0)Y (−A′

(0)) = A′
(0)Y − Y A′

(0) =XY − Y X ∈ T1(G).

Thus, the tangent space is the Lie algebra.

So the connection between Lie algebras and Lie groups are becoming clearer.
Essentially, the the exponential map gives a way of finding the tangent space of
a Lie group, which can be turned into a Lie algebra. Looking back at how we
found tangent spaces of Lie groups using the exponential map, it seems like the
most useful part of the exponential map was that it ”converted” multiplication
to addition through the laws of exponentiation. Indeed, it seems very telling
that the tangent space of matrices whose multiplicative inverses are equal to
their transpose consists of matrices whose additive inverses are equal to their
transpose. To understand this better, let’s define the idea of a one parameter
subgroup.

Definition 15. A one-parameter subgroup of a Lie group G is a smooth
homomorphism λ ∶ (R,+) → G. That is, it defines a homomorphism from the
additive group of real numbers to the multiplicative Lie group G. Then we have
that λ is a smooth curve with λ(a + b) = λ(a)λ(b).

It is easy to see that the exponential map is a one-parameter subgroup since
eA+B = eAeB . But what makes it special is that, for matrix groups, every
one-parameter subgroup is a matrix exponential:

Proposition 8. Every one-parameter subgroup of a matrix group G is of the
form λ(t) = etX where X is a matrix that is a tangent vector at the identity.

Proof. Suppose we have a one-parameter subgroup λ(t). Then we know that
for all a, b ∈ R,

λ(a)λ(b) = λ(a + b).

If differentiate with respect to b, we get

λ(a)λ′(b) = λ′(a + b)

Setting a = 0 gives
λ(a)λ′(0) = λ′(a).

This is a well-known differential equation with unique solution λ(a) = eλ
′(0)a.

Since λ′(0) is clearly a tangent vector at the identity, the proof is complete.

This illustrates the importance of the exponential map; it allows one to
rediscover the structure of a Lie group by providing a homomorphism from the
Lie group to its Lie algebra.
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5 Conclusion

Throughout this paper, we have explored the connections between Lie groups,
their tangent spaces, Lie algebras, and the exponential map. The essence of the
connection boils down to the exponential map being a one-parameter subgroup
which gives a homomorphism from the Lie group to the Lie algebra.

While this demonstrates the basics of matrix Lie groups and their interesting
qualities, there are much deeper results in this area of study. One example is
Ado’s theorem, a very powerful theorem that demonstrates the importance of
matrix Lie algebras.

Theorem 2. (Ado’s Theorem) Any finite-dimensional Lie algebra over a field
of characteristic zero is isomorphic to a square matrix Lie algebra under the
commutator bracket.

“Characteristic zero” means that adding the multiplicative identity to itself
any amount of times will never yield the additive identity of the field. For
example, every subfield of C is a field of characteristic zero.

Though the proof of this theorem is outside the scope of this paper, it demon-
strates the power of matrix Lie algebras and one of the reasons Lie groups are
so important: their Lie algebras can be viewed, concretely, as matrix algebras.
This is why Lie groups have numerous applications in different areas like theo-
retical physics and differential equations, and continue to be studied today.
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