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Abstract. This paper will focus on the simpler aspects of matrix Lie groups — including

the matrix exponential and Lie algebras, finishing with Ado’s theorem to prove Lie’s Third

Theorem.

Lie groups connect almost all branches of mathematics, including representation theory,
harmonic analysis, algebraic topology, algebraic geometry, combinatorics, differential geom-
etry, differential equations, number theory, low-dimensional topology, Riemannian geometry,
invariant theory, and finite group theory.

Lie groups now play a major role in other non-math fields; representation theory is used
extensively in particle physics; Lie groups and Lie algebras are often used in computer vision
and finance.

Lie’s original motivation for introducing Lie groups was to model the continuous symme-
tries of differential equations.

1. Preliminaries

Here, we define several basic concepts and go through a few examples that will be used
throughout this paper.

Definition 1.1. Denote the space of all n× n matrices with entries in ring R by Mn(R).

There is not much interesting about Mn(R). It is a ring under matrix addition and
multiplication, but it has zero divisors. Non-invertible matrices A ∈ Rn×n are zero divisors.
This can be observed by taking a vector ~v ∈ Rn with A~v = 0 and filling up a matrix B with
Bij = vi. Then AB = 0.

Thus, we focus on the multiplicative group of Mn(R):

Definition 1.2. The general linear group of degree n over a ring R, denoted GL(n,R), is
the set of all n× n invertible matrices with entries in V .

Let A,B ∈ GL(n,R), so det(A), det(B) 6= 0. Hence det(AB) = det(A) det(B) 6= 0, hence
AB ∈ GL(n,R). Furthermore, we have

1 = det(I) = det(A) det(A−1) =⇒ det(A−1) 6= 0 =⇒ A−1 ∈ GL(n,R),

so GL is indeed a group.

We may equip Mn(R) with a norm ‖·‖, defined as

(1) A 7→
√∑

a2ij.
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Thus we can define a distance between two matrices A,B by d(A,B) = ‖A−B‖ . In light
of this discussion:

Definition 1.3. A sequence of matrices An converges to A if ‖An − A‖ → 0 as n→∞.

Note that since the distance between aij and bij is included in this norm, in order for
‖An − A‖ to converge to 0, An must also converge entry-wise to A.

Definition 1.4. A matrix Lie group is a closed subgroup G of GL(n,R). In other words, if
An is a sequence of matrices in G converging to a matrix A, then either A ∈ G or A is not
invertible.

It is obvious that the general linear group is a matrix Lie group. Below, we will investigate
a few well-known matrix Lie groups.

Definition 1.5. The special linear group SL(n,R) consists of all n×n matrices with entries
in R with determinant 1.

This is fairly obviously a subgroup of GL; it is closed under multiplication and inversion
by the same calculations following Definition 1.2. It is also a matrix Lie group by continuity
of the determinant; det(A) = 1 =⇒ A ∈ SL(n,R).

Definition 1.6. Let A ∈ GLn(C), and define A∗ = (aji) to be the adjoint of A. The unitary
group U(n) = {A : A∗A = I} is a subgroup of GL(n,C). We may also define the subgroup
SU(n) ≤ U(n) consisting of A with determinant 1, called the special unitary group.

First we show that U(n) is indeed a subgroup of GL(n,C). Let A,B ∈ U(n). Then

(AB)∗(AB) = B∗A∗AB = B∗B = I =⇒ AB ∈ U(n)

(A−1)∗(A−1) = (A∗)∗(A∗) = AA∗ = AA−1 = I =⇒ A−1 ∈ U(n)

Also notice that since

1 = det(I) = det(A∗A) = det
(
Aᵀ
)

det(A) = det(Aᵀ) det(A) = det(A) det(A) = | det(A)|2,
we must have | det(A)| = 1. Consider An, a sequence in U(n). Their determinants all Lie on
the unit circle; so does the limit of their determinants. Hence A ∈ U(n), and the unitary
group is a matrix Lie group. The same can be said of SU(n).

Definition 1.7. Define the orthogonal group

O(n,R) =
{
A : A ∈ Rn×n, AᵀA = I

}
The special orthogonal group SO(n,R) ≤ O(n,R) contains only the matrices of positive
determinant.

Now we can check that this is a group. Let A,B be orthogonal. Then

(AB)ᵀAB = BᵀAᵀAB = BᵀB = I =⇒ AB ∈ O(n,R)

(A−1)ᵀA−1 = (Aᵀ)−1A−1 = (AAᵀ)−1 = I−1 = I =⇒ A−1 ∈ O(n,R)

To show that it is a matrix Lie group, observe

1 = det(I) = det(AᵀA) = det(Aᵀ) det(A) = det(A)2,
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so det(A) = ±1. If An → A, then det(An)→ det(A), so det(An) is eventually constant.

Notice that SO is in fact a subgroup of O, as it is closed under multiplication and inversion
and is a matrix Lie group for the same reasons as above.

2. The Matrix Exponential and Logarithm

The exponential function for matrices is instrumental in the study of Lie groups. It is
used in the definition of a Lie algebra from a Lie group and gives information about the Lie
group from its algebra. It is an analog of the exponential function for complex numbers:

(2) eA =
∞∑
k=0

Ak

k!

We now prove a few properties of the norm defined in (1) that will allow us to further
characterize exp.

Proposition 2.1. The following are properties of ‖·‖:

(1) ‖A+B‖ ≤ ‖A‖+ ‖B‖
(2) ‖AB‖ ≤ ‖A‖ ‖B‖
(3) exp converges under the norm
(4) exp(A) is a continuous function in A.

Proof. (1) follows from the Triangle Inequality in Cn2
, and (2) from the Cauchy-Schwarz

Inequality. (3) is true because
∞∑
k=0

∥∥∥∥Akk!

∥∥∥∥ ≤ ∞∑
k=0

‖A‖k

k!

converges. For (4), let R be a positive real number and B(R) = {A ∈ Rn×n : |A| ≤ R} . Let
Mn = R/n!. Then

∞∑
n=0

Mn =
∞∑
n=0

R

n!
= eR

and ∥∥∥∥Ann!

∥∥∥∥ =
‖An‖
n!
≤ ‖A‖

n

n!
=
Rn

n!

for each A ∈ B(R). Then exp(A) is continuous on B(R) by the Weierstraß M -test. For each
X ∈ Rn×n, there exists an R such that X ∈ B(R), hence exp is continuous on Rn×n. �

We also enumerate a few important properties of the exponential function:

Proposition 2.2. Let A,B ∈ Cn×n. Then

(a) e0 = I
(b) (eA)∗ = eA∗

(c) If AB = BA, then eA+B = eAeB

(d) eA is invertible and
(
eA
)−1

= e−A

(e) If B is invertible, then eBAB
−1

= BeAB−1.
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Proof. (1) is quite obvious, noting that 00 is an empty product and thus equal to I. (2) follows

by taking term-wise adjoints, which can be done as (A+ B)∗ = ((a+ b)ji) = (aji) + (bji) =
A∗ +B∗. (4) is true because

(3) eAeB =
∞∑
i=0

∞∑
j=0

Ai

i!
· B

j

j!
=
∞∑
s=0

s∑
i=0

Ai

i!
· Bs−i

(s− i)!
=
∞∑
s=0

1

s!

s∑
i=0

(
s

i

)
AiBs−i

It follows from commutativity of A,B that the inner sum equals (A + B)s. Thus we finish
(3):

eAeB =
∞∑
s=0

(A+B)s

s!
= eA+B.

For (5), we have

(BAB−1)n = BAB−1BAB−1 · · ·BAB−1 = BAA · · ·AB−1 = BAnB−1,

from which the result follows directly:

eBAB
−1

=
∞∑
n=0

(BAB−1)n

n!
=
∞∑
n=0

BAnB−1

n!
= B

(
∞∑
n=0

An

n!

)
B−1 = BeAB−1. �

The exponential function has a local inverse around the identity matrix I as well, defined
as

(4) logA =
∞∑
n=1

(−1)n+1

n
(A− I)n

Note that if ‖A− I‖ < 1, then (4) will converge because ‖(A− I)n‖ ≤ ‖A− I‖n for n ≥ 1.

Remark. It is also possible for this to converge when ‖A− I‖ > 1, but this doesn’t matter
too much.

It is also worth noting a few important properties of the logarithm. We state without
proof that elogA = A for ‖A− I‖ < 1 and that log(eB) = B for ‖B‖ < log 2. It immediately
follows from the former that log(A) + log(B) = log(AB).

3. Tangent Spaces

The importance of the exponential function is that it maps T (G) to G for a matrix group
G. A simple “almost-example” of this is the unit circle in C. We will see that tangent space
at the identity (1) is 1 + iθ; the exponential function is e · eiθ is a circle centered at 0 with
radius e, which has the same “geometry” as the unit circle.

First, we must define a path:

Definition 3.1. A path in G is a map γ : R → G that sends a variable t to a matrix
A(t) = (aij).

In a smooth path, each entry, is differentiable in t, in which case we write A′(t) = (a′ij).
It is useful to consider the set of all matrices A′(0) where A(0) = I, called the tangent space
at the identity.
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Proposition 3.2. T (G) is a vector space.

This proof is due to [2].

Proof. Let A′(0) ∈ T (G) and c ∈ R. Note that A(ct) is also a path through G, and its
derivative at 0 is cA′(ct). Since it passes through the identity (A(c · 0) = A(0) = I), it
follows that d

dt
A′(ct)

∣∣
t=0

= cA′(0) ∈ T (G).

Now suppose that A′(0), B′(0) ∈ T (G); A(0) = B(0) = I. Then A(t)B(t) is equal to I2 = I
at 0. Its derivative is A′(t)B(t) +A(t)B′(t), which at 0 is A′(0)I + IB′(0) = A′(0) +B′(0) ∈
T (G). �

We may also define bracket notation as [A,B] = AB−BA, which we will see gives rise to
the Lie algebra. Its foremost property is as follows:

Proposition 3.3. Let A,B ∈ T (G). Then [A,B] ∈ T (G).

This proof is due to [2].

Proof. Define γ(s, t) = esAetB(esA)−1 = AetBA−1, a smooth path with γ(0) = 1. Hence
d
dt
γt=0 = A(Be0)A−1 ∈ T (G). Also note that η(s) = d

dt
γ|t=0 = esAetB(esA)−1 = esAY (esA)−1

is a smooth function of s, so its tangent is in T (G). Since

d

ds
η(s) =

d

ds
(esAY e−sA) = (AesA)(Be−sA) + (esAB)(−esA),

η′(0) = XY − Y X ∈ T (G). �

Proposition 3.4. The Lie bracket also satisfies:

(1) Alternativity: [A,A] = 0
(2) Anti-commutativity: [A,B] = −[B,A]
(3) Linearity: [A+B,C] = [A,C] + [B,C]
(4) The Jacobi Identity:

∑
cyc[A, [B,C]] = 0

(5) Flexibility: [A, [B,A]] = [[A,B], A].1

Proof. (1) is obvious as [A,A] = AA − AA = 0. For (2), [A,B] + [B,A] = AB − BA +
BA − AB = 0. For (3), [A + B,C] = (A + B)C − C(A + B) = AC + BC − CA − CB =
AC − CA+BC − CB = [A,C] + [B,C]. For (4),∑

cyc

[A, [B,C]] =
∑
cyc

A[B,C]− [B,C]A

=
∑
cyc

A(BC − CB)− (BC − CB)A

=
∑
cyc

ABC − ACB −BCA+ CBA.

1Note that the bracket is not necessarily associative. Nonetheless, much of the terminology used in the

study of Lie algebras also appLies to associative rings and algebras.
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It is not hard to check from expanding the sum that this is equal to 0. (5) is again just
expansion,

[A, [B,A]] = [A,BA− AB]− [AB −BA,A] = ABA− AAB −BAA− ABA
= ABA−BAA− AAB + ABA = [AB −BA,A] = [[A,B], A]. �

4. Lie Algebras

We now apply the bracket notation in the previous section to develop the idea of Lie
algebras and their connection to Lie groups.

Definition 4.1. The Lie algebra defined on T (G) is the tangent space equipped with linear
operations and the bracket operation. It is customary to denote it with a lowercase fraktur
letter (e.g. g).

Note that given the Lie algebra, one can recover the Lie group as the image of the expo-
nential map (2). That is, G = exp(g).

Definition 4.2. A Lie subalgebra is a subspace h ⊆ g which is closed under the Lie bracket.

Definition 4.3. An ideal i ⊆ g is a subalgebra satisfying [g, i] ⊆ i.

Ideals satisfy a stronger condition:

Example. Consider the Lie algebra of diagonal 2× 2 matrices d(2) ⊂ gl(2). Their bracket
is [[

a b
c d

]
,

[
x 0
0 y

]]
=

[
a b
c d

] [
x 0
0 y

]
−
[
x 0
0 y

] [
a b
c d

]
=

[
ax by
cx dy

]
−
[
ax bx
cy dy

]
=

[
0 b(y − x)

c(x− y) 0

]
,

which is of course not diagonal. However, it is easy to see that the bracket of two diagonal
matrices is also diagonal, as in this case we would have b = c = 0. Thus d(2) is a subalgebra,
but not an ideal.

Proposition 4.4. The tangent space T (H) of a normal subgroup H of a matrix group G is
an ideal in T (G).

Proof. T (H) is a vector space and a subspace of T (G) because any tangent to H at 0 is also
a tangent to G at 0. Thus it remains to show that T (H) is closed under Lie brackets. Let
X ∈ T (G), Y ∈ T (H). Since H is normal, it is closed under conjugation, so we may define
an η as in the proof of Proposition 3.3 with tangent vector XY − Y X. �

Now, we saw in Proposition 2.2 that eA+B = eAeB where A and B commute. Suppose
that we instead try to solve eAeB = eC for C. Then C = log(eAeB); expansion shows that
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C =
∞∑
k=1

(−1)k−1

k

[(
∞∑
i=0

Ai

i!

)(
∞∑
j=0

Bj

j!

)
− 1

]k

=
∞∑
k=1

(−1)k−1

k

(∑
i+j≥1

AiBj

i!j!

)k

=
∞∑
k=1

(−1)k−1

k

∑
i`+j`≥1∀`∈[k]

Ai1Bj1 · · ·Ai`Bj`

i1!j1! · · · i`!j`!
.

We may also form similar developments by taking the derivative of the exponential func-
tion, manipulating it, and integrating; this result is known as Dynkin’s Formula.2 We omit
the details of its proof.

Proposition 4.5 (Dynkin).

C =
∞∑
k=1

(−1)k−1

k

∑
`+j`≥1∀`∈[k]

[Ai1Bj1 · · ·AikBjk ]

(i1 + j1 + · · ·+ ik + jk)(i1!j1! · · · ik!jk!)
,

where we have used the shorthand notation

Ai1Bj1 · · ·AikBjk = [A, [A, · · · [A︸ ︷︷ ︸
i1

, [B, [B, · · · [B︸ ︷︷ ︸
j1

, · · · [A, [A, · · · [A︸ ︷︷ ︸
ik

, [B, [B, · · ·B︸ ︷︷ ︸
jk

]] · · · ]].

The first few terms are well-known and are given by

(1) A+B
(2) 1

2
(AB −BA) = 1

2
[X, Y ]

(3) 1
12

(A2B + AB2 − 2ABA+B2A+BA2 − 2BAB) = 1
12

([A, [A,B]] + [B, [B,A]])

(4) 1
24

(A2B2 − 2ABAB −B2A2 + 2BABA) = − 1
24

[B, [A, [A,B]]].

In fact:

Theorem 4.6 (Baker-Campbell-Hausdorff [BCH). ] The terms in the series (Proposition
4.5) can all be expressed in terms of nested Lie brackets with rational coefficients.

Remark. When A,B commute, all of the brackets vanish, and we are left with only the A+B
term, and Proposition 2.2(c) follows.

We now state, mostly without proof, some of the most fundamental theorems in Lie theory
that are the main results of the paper. They are well beyond the scope of this paper but may
be found in [1] and [3]. Before proceeding, we must first define connected Lie subgroups.

Definition 4.7. Let G be a matrix Lie group with Lie algebra g. Then H ⊂ G is a connected
Lie subgroup of G if:

(1) H is a subgroup of G
(2) The Lie algebra h of H is a Lie subalgebra of g

2This, along with the above expression for C, converge for ‖A‖+ ‖B‖ < log 2, ‖C‖ < log 2.
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(3) Every element of H may be written as eA1 · · · eAk for Ai ∈ h.

The following are applications of the BCH Theorem 4.6. This treatment of Lie’s Third
Theorem 4.10 is due to [1].

Theorem 4.8. Let G be a matrix Lie group with Lie algebra g and h be a Lie subalgebra of
g. Then there exists a unique connected Lie group H of G with Lie algebra h.

The rough idea with its proof is to show that the Lie algebra of H is h by proving subsets
in two directions with a countability argument.

Theorem 4.9 (Ado). Every finite dimensional Lie algebra is a Lie algebra of gl(n,R) for
sufficiently large n.

Theorem 4.10 (Lie’s Third Theorem). For any finite-dimensional Lie algebra g¡ there is a
unique simply connected Lie group G whose Lie algebra is g.

Proof. By Ado’s theorem, we may identify g with a real subalgebra of gl(n,C). By Theorem
4.8, there is a connected Lie subgroup of GL(n,C) with Lie algebra g. �

Lie’s Third Theorem is a part of the larger Lie group-Lie algebra correspondence, which
includes the homomorphisms theorem and the subgroups-subalgebras theorem. It has im-
portance in various fields of math, along with the correspondence between SU(2) and SO(3)
in physics.
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